Nothing
One-sided group sequential design with
90 % power and 2.5 % Type I Error.
Sample
Size
Analysis Ratio* Z Nominal p Spend
1 0.205 3.25 0.0006 0.0006
2 0.409 2.99 0.0014 0.0013
3 0.614 2.69 0.0036 0.0028
4 0.819 2.37 0.0088 0.0063
5 1.023 2.03 0.0214 0.0140
Total 0.0250
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 1.0197
3.2415 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 0.7366
Group sequential design sample size for time-to-event outcome
with sample size 22. The analysis plan below shows events
at each analysis.
Symmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.
Sample
Size
Analysis Ratio* Z Nominal p Spend
1 0.205 3.25 0.0006 0.0006
2 0.409 2.99 0.0014 0.0013
3 0.614 2.69 0.0036 0.0028
4 0.819 2.37 0.0088 0.0063
5 1.023 2.03 0.0214 0.0140
Total 0.0250
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 1.0160
3.2415 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 0.7366
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 4 5 Total
0.0000 6e-04 0.0013 0.0028 0.0063 0.014 0.025
3.2415 0e+00 0.0000 0.0000 0.0000 0.000 0.000
Symmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.
Sample
Size
Analysis Ratio* Z Nominal p Spend
1 0.205 3.25 0.0006 0.0006
2 0.409 2.99 0.0014 0.0013
3 0.614 2.69 0.0036 0.0028
4 0.819 2.37 0.0088 0.0063
5 1.023 2.03 0.0214 0.0140
Total 0.0250
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 1.0160
3.2415 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 0.7366
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 4 5 Total
0.0000 6e-04 0.0013 0.0028 0.0063 0.014 0.025
3.2415 0e+00 0.0000 0.0000 0.0000 0.000 0.000
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.
Sample
Size ----Lower bounds---- ----Upper bounds-----
Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++
1 0.214 -0.92 0.1777 0.0077 3.25 0.0006 0.0006
2 0.428 -0.07 0.4727 0.0115 2.99 0.0014 0.0013
3 0.641 0.66 0.7440 0.0171 2.69 0.0036 0.0028
4 0.855 1.32 0.9058 0.0256 2.37 0.0089 0.0063
5 1.069 1.97 0.9755 0.0381 1.97 0.0245 0.0140
Total 0.1000 0.0250
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 0.5636
3.2415 0.0397 0.1610 0.2743 0.2677 0.1573 0.900 0.7306
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 4 5 Total
0.0000 0.1777 0.3135 0.2708 0.1527 0.0602 0.975
3.2415 0.0077 0.0115 0.0171 0.0256 0.0381 0.100
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.
----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++
1 177 -0.90 0.1836 0.0077 3.25 0.0006 0.0006
2 353 -0.04 0.4853 0.0115 2.99 0.0014 0.0013
3 529 0.69 0.7563 0.0171 2.69 0.0036 0.0028
4 705 1.36 0.9131 0.0256 2.37 0.0088 0.0063
5 882 2.03 0.9786 0.0381 2.03 0.0214 0.0140
Total 0.1000 0.0250
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0062 0.0117 0.0226 458.0
0.1146 0.0417 0.1679 0.2806 0.2654 0.1444 0.9000 595.2
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 4 5 Total
0.0000 0.1836 0.3201 0.2700 0.1477 0.0559 0.9774
0.1146 0.0077 0.0115 0.0171 0.0256 0.0381 0.1000
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.
Sample
Size ----Lower bounds---- ----Upper bounds-----
Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++
1 0.205 -1.44 0.0751 0.0751 3.25 0.0006 0.0006
2 0.410 -0.98 0.1627 0.1120 2.99 0.0014 0.0013
3 0.615 -0.47 0.3207 0.1670 2.69 0.0036 0.0028
4 0.821 0.21 0.5833 0.2492 2.37 0.0088 0.0063
5 1.026 2.02 0.9785 0.3717 2.02 0.0215 0.0140
Total 0.9750 0.0250
+ lower bound spending (under H0):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 0.7719
3.2415 0.0372 0.1517 0.2652 0.2698 0.1761 0.900 0.7349
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 4 5 Total
0.0000 0.0751 0.1120 0.1670 0.2492 0.3717 0.975
3.2415 0.0018 0.0009 0.0009 0.0023 0.0942 0.100
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.
Sample
Size ----Lower bounds---- ----Upper bounds-----
Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++
1 0.205 -1.44 0.0751 0.0751 3.25 0.0006 0.0006
2 0.411 -0.98 0.1627 0.1120 2.99 0.0014 0.0013
3 0.616 -0.47 0.3207 0.1671 2.69 0.0036 0.0028
4 0.821 0.21 0.5834 0.2492 2.37 0.0088 0.0063
5 1.027 2.03 0.9786 0.3718 2.03 0.0214 0.0140
Total 0.9751 0.0250
+ lower bound spending (under H0):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.0249 0.7726
3.2415 0.0372 0.1519 0.2654 0.2697 0.1757 0.9000 0.7353
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 4 5 Total
0.0000 0.0751 0.1120 0.1671 0.2492 0.3718 0.9751
3.2415 0.0018 0.0009 0.0009 0.0023 0.0942 0.1000
One-sided group sequential design with
90 % power and 2.5 % Type I Error.
Analysis N Z Nominal p Spend
1 3 3.25 0.0006 0.0006
2 5 2.99 0.0014 0.0013
3 8 2.69 0.0036 0.0028
4 10 2.37 0.0088 0.0063
5 13 2.03 0.0214 0.0140
Total 0.0250
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 4 5 Total E{N}
0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 12.2
0.9357 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 8.8
Symmetric two-sided group sequential design with
98.5 % power and 5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.
Sample
Size
Analysis Ratio* Z Nominal p Spend
1 300 2.77 0.0028 0.0028
2 600 2.23 0.0127 0.0114
3 860 1.68 0.0462 0.0357
Total 0.0500
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim
Boundary crossing probabilities and expected sample size
assume any cross stops the trial
Upper boundary (power or Type I Error)
Analysis
Theta 1 2 3 Total E{N}
0.0000 0.0028 0.0114 0.0357 0.05 850.8823
3.8149 1.0000 0.0000 0.0000 1.00 300.0000
Lower boundary (futility or Type II Error)
Analysis
Theta 1 2 3 Total
0.0000 0.0028 0.0114 0.0357 0.05
3.8149 0.0000 0.0000 0.0000 0.00
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.