tests/testthat/_snaps/independent-test-print.gsDesign.md

Test: checking for test.type=1, n.fix=1

One-sided group sequential design with
90 % power and 2.5 % Type I Error.
           Sample
            Size 
  Analysis Ratio*  Z   Nominal p  Spend
         1  0.205 3.25    0.0006 0.0006
         2  0.409 2.99    0.0014 0.0013
         3  0.614 2.69    0.0036 0.0028
         4  0.819 2.37    0.0088 0.0063
         5  1.023 2.03    0.0214 0.0140
     Total                       0.0250

++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5 Total   E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 1.0197
  3.2415 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 0.7366

Test: checking for nFixSurv >1

Group sequential design sample size for time-to-event outcome
with sample size 22. The analysis plan below shows events
at each analysis.
Symmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

           Sample
            Size 
  Analysis Ratio*  Z   Nominal p  Spend
         1  0.205 3.25    0.0006 0.0006
         2  0.409 2.99    0.0014 0.0013
         3  0.614 2.69    0.0036 0.0028
         4  0.819 2.37    0.0088 0.0063
         5  1.023 2.03    0.0214 0.0140
     Total                       0.0250

++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5 Total   E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 1.0160
  3.2415 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 0.7366

Lower boundary (futility or Type II Error)
          Analysis
   Theta     1      2      3      4     5 Total
  0.0000 6e-04 0.0013 0.0028 0.0063 0.014 0.025
  3.2415 0e+00 0.0000 0.0000 0.0000 0.000 0.000

Test: checking for test.type=2,n.fix=1

Symmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

           Sample
            Size 
  Analysis Ratio*  Z   Nominal p  Spend
         1  0.205 3.25    0.0006 0.0006
         2  0.409 2.99    0.0014 0.0013
         3  0.614 2.69    0.0036 0.0028
         4  0.819 2.37    0.0088 0.0063
         5  1.023 2.03    0.0214 0.0140
     Total                       0.0250

++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5 Total   E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 1.0160
  3.2415 0.0370 0.1512 0.2647 0.2699 0.1771 0.900 0.7366

Lower boundary (futility or Type II Error)
          Analysis
   Theta     1      2      3      4     5 Total
  0.0000 6e-04 0.0013 0.0028 0.0063 0.014 0.025
  3.2415 0e+00 0.0000 0.0000 0.0000 0.000 0.000

Test: checking for test.type=3,n.fix=1

Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

           Sample
            Size    ----Lower bounds----  ----Upper bounds-----
  Analysis Ratio*   Z   Nominal p Spend+  Z   Nominal p Spend++
         1  0.214 -0.92    0.1777 0.0077 3.25    0.0006  0.0006
         2  0.428 -0.07    0.4727 0.0115 2.99    0.0014  0.0013
         3  0.641  0.66    0.7440 0.0171 2.69    0.0036  0.0028
         4  0.855  1.32    0.9058 0.0256 2.37    0.0089  0.0063
         5  1.069  1.97    0.9755 0.0381 1.97    0.0245  0.0140
     Total                        0.1000                 0.0250 
+ lower bound beta spending (under H1):
 Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5 Total   E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 0.5636
  3.2415 0.0397 0.1610 0.2743 0.2677 0.1573 0.900 0.7306

Lower boundary (futility or Type II Error)
          Analysis
   Theta      1      2      3      4      5 Total
  0.0000 0.1777 0.3135 0.2708 0.1527 0.0602 0.975
  3.2415 0.0077 0.0115 0.0171 0.0256 0.0381 0.100

Test: checking for test.type=4,n.fix=1

Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

                 ----Lower bounds----  ----Upper bounds-----
  Analysis  N    Z   Nominal p Spend+  Z   Nominal p Spend++
         1 177 -0.90    0.1836 0.0077 3.25    0.0006  0.0006
         2 353 -0.04    0.4853 0.0115 2.99    0.0014  0.0013
         3 529  0.69    0.7563 0.0171 2.69    0.0036  0.0028
         4 705  1.36    0.9131 0.0256 2.37    0.0088  0.0063
         5 882  2.03    0.9786 0.0381 2.03    0.0214  0.0140
     Total                     0.1000                 0.0250 
+ lower bound beta spending (under H1):
 Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5  Total  E{N}
  0.0000 0.0006 0.0013 0.0028 0.0062 0.0117 0.0226 458.0
  0.1146 0.0417 0.1679 0.2806 0.2654 0.1444 0.9000 595.2

Lower boundary (futility or Type II Error)
          Analysis
   Theta      1      2      3      4      5  Total
  0.0000 0.1836 0.3201 0.2700 0.1477 0.0559 0.9774
  0.1146 0.0077 0.0115 0.0171 0.0256 0.0381 0.1000

Test: checking for test.type=5,n.fix=1

Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

           Sample
            Size    ----Lower bounds----  ----Upper bounds-----
  Analysis Ratio*   Z   Nominal p Spend+  Z   Nominal p Spend++
         1  0.205 -1.44    0.0751 0.0751 3.25    0.0006  0.0006
         2  0.410 -0.98    0.1627 0.1120 2.99    0.0014  0.0013
         3  0.615 -0.47    0.3207 0.1670 2.69    0.0036  0.0028
         4  0.821  0.21    0.5833 0.2492 2.37    0.0088  0.0063
         5  1.026  2.02    0.9785 0.3717 2.02    0.0215  0.0140
     Total                        0.9750                 0.0250 
+ lower bound spending (under H0):
 Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5 Total   E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 0.7719
  3.2415 0.0372 0.1517 0.2652 0.2698 0.1761 0.900 0.7349

Lower boundary (futility or Type II Error)
          Analysis
   Theta      1      2      3      4      5 Total
  0.0000 0.0751 0.1120 0.1670 0.2492 0.3717 0.975
  3.2415 0.0018 0.0009 0.0009 0.0023 0.0942 0.100

Test: checking for test.type=6,n.fix=1

Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

           Sample
            Size    ----Lower bounds----  ----Upper bounds-----
  Analysis Ratio*   Z   Nominal p Spend+  Z   Nominal p Spend++
         1  0.205 -1.44    0.0751 0.0751 3.25    0.0006  0.0006
         2  0.411 -0.98    0.1627 0.1120 2.99    0.0014  0.0013
         3  0.616 -0.47    0.3207 0.1671 2.69    0.0036  0.0028
         4  0.821  0.21    0.5834 0.2492 2.37    0.0088  0.0063
         5  1.027  2.03    0.9786 0.3718 2.03    0.0214  0.0140
     Total                        0.9751                 0.0250 
+ lower bound spending (under H0):
 Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5  Total   E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.0249 0.7726
  3.2415 0.0372 0.1519 0.2654 0.2697 0.1757 0.9000 0.7353

Lower boundary (futility or Type II Error)
          Analysis
   Theta      1      2      3      4      5  Total
  0.0000 0.0751 0.1120 0.1671 0.2492 0.3718 0.9751
  3.2415 0.0018 0.0009 0.0009 0.0023 0.0942 0.1000

Test: checking for n.fix > 1

One-sided group sequential design with
90 % power and 2.5 % Type I Error.

  Analysis N   Z   Nominal p  Spend
         1  3 3.25    0.0006 0.0006
         2  5 2.99    0.0014 0.0013
         3  8 2.69    0.0036 0.0028
         4 10 2.37    0.0088 0.0063
         5 13 2.03    0.0214 0.0140
     Total                   0.0250

++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3      4      5 Total E{N}
  0.0000 0.0006 0.0013 0.0028 0.0063 0.0140 0.025 12.2
  0.9357 0.0370 0.1512 0.2647 0.2699 0.1771 0.900  8.8

Test: checking with alpha, beta, n.I set

Symmetric two-sided group sequential design with
98.5 % power and 5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

           Sample
            Size 
  Analysis Ratio*  Z   Nominal p  Spend
         1    300 2.77    0.0028 0.0028
         2    600 2.23    0.0127 0.0114
         3    860 1.68    0.0462 0.0357
     Total                       0.0500

++ alpha spending:
 Hwang-Shih-DeCani spending function with gamma = -4.
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2      3 Total     E{N}
  0.0000 0.0028 0.0114 0.0357  0.05 850.8823
  3.8149 1.0000 0.0000 0.0000  1.00 300.0000

Lower boundary (futility or Type II Error)
          Analysis
   Theta      1      2      3 Total
  0.0000 0.0028 0.0114 0.0357  0.05
  3.8149 0.0000 0.0000 0.0000  0.00


Try the gsDesign package in your browser

Any scripts or data that you put into this service are public.

gsDesign documentation built on Feb. 15, 2026, 5:06 p.m.