Nothing
Group sequential design (method=LachinFoulkes; k=3 analyses; Two-sided asymmetric with non-binding futility)
N=187.2 subjects | D=93.5 events | T=18.5 study duration | accrual=18.0 Accrual duration | minfup=0.5 minimum follow-up | ratio=1 randomization ratio (experimental/control)
Spending functions:
Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
Futility bounds derived using a Hwang-Shih-DeCani spending function with gamma = -2.
Analysis summary:
Method: LachinFoulkes
Analysis Value Efficacy Futility
IA 1: 33% Z 3.0107 -0.2388
N: 100 p (1-sided) 0.0013 0.5944
Events: 32 ~HR at bound 0.3401 1.0893
Month: 10 P(Cross) if HR=1 0.0013 0.4056
P(Cross) if HR=0.5 0.1412 0.0148
IA 2: 67% Z 2.5465 0.9410
N: 150 p (1-sided) 0.0054 0.1733
Events: 63 ~HR at bound 0.5246 0.7879
Month: 14 P(Cross) if HR=1 0.0062 0.8347
P(Cross) if HR=0.5 0.5815 0.0437
Final Z 1.9992 1.9992
N: 188 p (1-sided) 0.0228 0.0228
Events: 94 ~HR at bound 0.6613 0.6613
Month: 18 P(Cross) if HR=1 0.0233 0.9767
P(Cross) if HR=0.5 0.9000 0.1000
Key inputs (names preserved):
desc item value input
Accrual rate(s) gamma 10.401 1
Accrual rate duration(s) R 18 18
Control hazard rate(s) lambdaC 0.116 0.116
Control dropout rate(s) eta 0 0
Experimental dropout rate(s) etaE 0 etaE
Event and dropout rate duration(s) S NULL S
Group sequential design (method=LachinFoulkes; k=3 analyses; Two-sided asymmetric with non-binding futility)
N=75.7 subjects | D=37.8 events | T=18.5 study duration | accrual=18.0 Accrual duration | minfup=0.5 minimum follow-up | ratio=1 randomization ratio (experimental/control)
Spending functions:
Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
Futility bounds derived using a Hwang-Shih-DeCani spending function with gamma = -2.
Analysis summary:
Method: LachinFoulkes
Analysis Value Efficacy Futility
IA 1: 33% Z 3.0107 -0.2388
N: 42 p (1-sided) 0.0013 0.5944
Events: 13 ~HR at bound 0.2750 1.7160
Month: 10 P(Cross) if HR=1.5 0.0013 0.4056
P(Cross) if HR=0.5 0.1412 0.0148
IA 2: 67% Z 2.5465 0.9410
N: 62 p (1-sided) 0.0054 0.1733
Events: 26 ~HR at bound 0.5438 1.0310
Month: 14 P(Cross) if HR=1.5 0.0062 0.8347
P(Cross) if HR=0.5 0.5815 0.0437
Final Z 1.9992 1.9992
N: 76 p (1-sided) 0.0228 0.0228
Events: 38 ~HR at bound 0.7827 0.7827
Month: 18 P(Cross) if HR=1.5 0.0233 0.9767
P(Cross) if HR=0.5 0.9000 0.1000
Key inputs (names preserved):
desc item value input
Accrual rate(s) gamma 4.204 1
Accrual rate duration(s) R 18 18
Control hazard rate(s) lambdaC 0.116 0.116
Control dropout rate(s) eta 0 0
Experimental dropout rate(s) etaE 0 etaE
Event and dropout rate duration(s) S NULL S
Group sequential design (method=LachinFoulkes; k=4 analyses; Two-sided asymmetric with binding futility)
N=147.8 subjects | D=106.5 events | T=36.0 study duration | accrual=24.0 Accrual duration | minfup=12.0 minimum follow-up | ratio=1 randomization ratio (experimental/control)
Spending functions:
Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
Futility bounds derived using a Kim-DeMets (power) spending function with rho = 0.
Analysis summary:
Method: LachinFoulkes
Analysis Value Efficacy Futility
IA 1: 25% Z 3.1554 0.1555
N: 76 p (1-sided) 0.0008 0.4382
Events: 27 ~HR at bound 0.2944 0.9415
Month: 12 P(Cross) if HR=1 0.0008 0.5618
P(Cross) if HR=0.5 0.0877 0.0500
IA 2: 50% Z 2.8175 0.7616
N: 118 p (1-sided) 0.0024 0.2231
Events: 54 ~HR at bound 0.4620 0.8116
Month: 19 P(Cross) if HR=1 0.0030 0.8116
P(Cross) if HR=0.5 0.4004 0.0707
IA 3: 75% Z 2.4200 1.3357
N: 148 p (1-sided) 0.0078 0.0908
Events: 80 ~HR at bound 0.5819 0.7416
Month: 25 P(Cross) if HR=1 0.0089 0.9300
P(Cross) if HR=0.5 0.7493 0.0866
Final Z 1.8598 1.8598
N: 148 p (1-sided) 0.0315 0.0315
Events: 107 ~HR at bound 0.6974 0.6974
Month: 36 P(Cross) if HR=1 0.0249 0.9751
P(Cross) if HR=0.5 0.9000 0.1000
Key inputs (names preserved):
desc item value input
Accrual rate(s) gamma 6.16 1
Accrual rate duration(s) R 24 12
Control hazard rate(s) lambdaC 0.116 0.116
Control dropout rate(s) eta 0.017 0.017
Experimental dropout rate(s) etaE 0.017 etaE
Event and dropout rate duration(s) S NULL S
Group sequential design (method=LachinFoulkes; k=4 analyses; One-sided (efficacy only))
N=122.2 subjects | D=88.0 events | T=36.0 study duration | accrual=24.0 Accrual duration | minfup=12.0 minimum follow-up | ratio=1 randomization ratio (experimental/control)
Spending functions:
Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
Analysis summary:
Method: LachinFoulkes
Analysis Value Efficacy
IA 1: 25% Z 3.1554
N: 64 p (1-sided) 0.0008
Events: 23 ~HR at bound 0.2605
Month: 12 P(Cross) if HR=1 0.0008
P(Cross) if HR=0.5 0.0644
IA 2: 50% Z 2.8183
N: 98 p (1-sided) 0.0024
Events: 45 ~HR at bound 0.4276
Month: 19 P(Cross) if HR=1 0.0030
P(Cross) if HR=0.5 0.3151
IA 3: 75% Z 2.4390
N: 124 p (1-sided) 0.0074
Events: 67 ~HR at bound 0.5486
Month: 25 P(Cross) if HR=1 0.0089
P(Cross) if HR=0.5 0.6631
Final Z 2.0136
N: 124 p (1-sided) 0.0220
Events: 89 ~HR at bound 0.6510
Month: 36 P(Cross) if HR=1 0.0250
P(Cross) if HR=0.5 0.9000
Key inputs (names preserved):
desc item value input
Accrual rate(s) gamma 5.092 1
Accrual rate duration(s) R 24 12
Control hazard rate(s) lambdaC 0.116 0.116
Control dropout rate(s) eta 0.017 0.017
Experimental dropout rate(s) etaE 0.017 etaE
Event and dropout rate duration(s) S NULL S
Group sequential design (method=LachinFoulkes; k=4 analyses; Two-sided asymmetric with binding futility)
N=157.1 subjects | D=117.0 events | T=36.0 study duration | accrual=24.0 Accrual duration | minfup=12.0 minimum follow-up | ratio=0.6 randomization ratio (experimental/control)
Spending functions:
Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
Futility bounds derived using a Kim-DeMets (power) spending function with rho = 0.
Analysis summary:
Method: LachinFoulkes
Analysis Value Efficacy Futility
IA 1: 25% Z 3.1554 0.1555
N: 80 p (1-sided) 0.0008 0.4382
Events: 30 ~HR at bound 0.2996 0.9424
Month: 12 P(Cross) if HR=1 0.0008 0.5618
P(Cross) if HR=0.5 0.0877 0.0500
IA 2: 50% Z 2.8175 0.7616
N: 123 p (1-sided) 0.0024 0.2231
Events: 59 ~HR at bound 0.4672 0.8141
Month: 19 P(Cross) if HR=1 0.0030 0.8116
P(Cross) if HR=0.5 0.4004 0.0707
IA 3: 75% Z 2.4200 1.3357
N: 158 p (1-sided) 0.0078 0.0908
Events: 88 ~HR at bound 0.5865 0.7449
Month: 25 P(Cross) if HR=1 0.0089 0.9300
P(Cross) if HR=0.5 0.7493 0.0866
Final Z 1.8598 1.8598
N: 158 p (1-sided) 0.0315 0.0315
Events: 117 ~HR at bound 0.7011 0.7011
Month: 36 P(Cross) if HR=1 0.0249 0.9751
P(Cross) if HR=0.5 0.9000 0.1000
Key inputs (names preserved):
desc item value input
Accrual rate(s) gamma 6.548 1
Accrual rate duration(s) R 24 12
Control hazard rate(s) lambdaC 0.116 0.116
Control dropout rate(s) eta 0.017 0.017
Experimental dropout rate(s) etaE 0.017 etaE
Event and dropout rate duration(s) S NULL S
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.