tests/testthat/_snaps/independent-test-print.gsSurv.md

Test: checking hazard ratio hr0 = 1

Group sequential design (method=LachinFoulkes; k=3 analyses; Two-sided asymmetric with non-binding futility)
N=187.2 subjects | D=93.5 events | T=18.5 study duration | accrual=18.0 Accrual duration | minfup=0.5 minimum follow-up | ratio=1 randomization ratio (experimental/control)

Spending functions:
  Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
  Futility bounds derived using a Hwang-Shih-DeCani spending function with gamma = -2.

Analysis summary:
Method: LachinFoulkes 
   Analysis              Value Efficacy Futility
  IA 1: 33%                  Z   3.0107  -0.2388
     N: 100        p (1-sided)   0.0013   0.5944
 Events: 32       ~HR at bound   0.3401   1.0893
  Month: 10   P(Cross) if HR=1   0.0013   0.4056
            P(Cross) if HR=0.5   0.1412   0.0148
  IA 2: 67%                  Z   2.5465   0.9410
     N: 150        p (1-sided)   0.0054   0.1733
 Events: 63       ~HR at bound   0.5246   0.7879
  Month: 14   P(Cross) if HR=1   0.0062   0.8347
            P(Cross) if HR=0.5   0.5815   0.0437
      Final                  Z   1.9992   1.9992
     N: 188        p (1-sided)   0.0228   0.0228
 Events: 94       ~HR at bound   0.6613   0.6613
  Month: 18   P(Cross) if HR=1   0.0233   0.9767
            P(Cross) if HR=0.5   0.9000   0.1000

Key inputs (names preserved):
                               desc    item  value input
                    Accrual rate(s)   gamma 10.401     1
           Accrual rate duration(s)       R     18    18
             Control hazard rate(s) lambdaC  0.116 0.116
            Control dropout rate(s)     eta      0     0
       Experimental dropout rate(s)    etaE      0  etaE
 Event and dropout rate duration(s)       S   NULL     S

Test: checking hazard ratio hr0 != 1

Group sequential design (method=LachinFoulkes; k=3 analyses; Two-sided asymmetric with non-binding futility)
N=75.7 subjects | D=37.8 events | T=18.5 study duration | accrual=18.0 Accrual duration | minfup=0.5 minimum follow-up | ratio=1 randomization ratio (experimental/control)

Spending functions:
  Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
  Futility bounds derived using a Hwang-Shih-DeCani spending function with gamma = -2.

Analysis summary:
Method: LachinFoulkes 
   Analysis              Value Efficacy Futility
  IA 1: 33%                  Z   3.0107  -0.2388
      N: 42        p (1-sided)   0.0013   0.5944
 Events: 13       ~HR at bound   0.2750   1.7160
  Month: 10 P(Cross) if HR=1.5   0.0013   0.4056
            P(Cross) if HR=0.5   0.1412   0.0148
  IA 2: 67%                  Z   2.5465   0.9410
      N: 62        p (1-sided)   0.0054   0.1733
 Events: 26       ~HR at bound   0.5438   1.0310
  Month: 14 P(Cross) if HR=1.5   0.0062   0.8347
            P(Cross) if HR=0.5   0.5815   0.0437
      Final                  Z   1.9992   1.9992
      N: 76        p (1-sided)   0.0228   0.0228
 Events: 38       ~HR at bound   0.7827   0.7827
  Month: 18 P(Cross) if HR=1.5   0.0233   0.9767
            P(Cross) if HR=0.5   0.9000   0.1000

Key inputs (names preserved):
                               desc    item value input
                    Accrual rate(s)   gamma 4.204     1
           Accrual rate duration(s)       R    18    18
             Control hazard rate(s) lambdaC 0.116 0.116
            Control dropout rate(s)     eta     0     0
       Experimental dropout rate(s)    etaE     0  etaE
 Event and dropout rate duration(s)       S  NULL     S

Test: checking test.type > 1

Group sequential design (method=LachinFoulkes; k=4 analyses; Two-sided asymmetric with binding futility)
N=147.8 subjects | D=106.5 events | T=36.0 study duration | accrual=24.0 Accrual duration | minfup=12.0 minimum follow-up | ratio=1 randomization ratio (experimental/control)

Spending functions:
  Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
  Futility bounds derived using a Kim-DeMets (power) spending function with rho = 0.

Analysis summary:
Method: LachinFoulkes 
    Analysis              Value Efficacy Futility
   IA 1: 25%                  Z   3.1554   0.1555
       N: 76        p (1-sided)   0.0008   0.4382
  Events: 27       ~HR at bound   0.2944   0.9415
   Month: 12   P(Cross) if HR=1   0.0008   0.5618
             P(Cross) if HR=0.5   0.0877   0.0500
   IA 2: 50%                  Z   2.8175   0.7616
      N: 118        p (1-sided)   0.0024   0.2231
  Events: 54       ~HR at bound   0.4620   0.8116
   Month: 19   P(Cross) if HR=1   0.0030   0.8116
             P(Cross) if HR=0.5   0.4004   0.0707
   IA 3: 75%                  Z   2.4200   1.3357
      N: 148        p (1-sided)   0.0078   0.0908
  Events: 80       ~HR at bound   0.5819   0.7416
   Month: 25   P(Cross) if HR=1   0.0089   0.9300
             P(Cross) if HR=0.5   0.7493   0.0866
       Final                  Z   1.8598   1.8598
      N: 148        p (1-sided)   0.0315   0.0315
 Events: 107       ~HR at bound   0.6974   0.6974
   Month: 36   P(Cross) if HR=1   0.0249   0.9751
             P(Cross) if HR=0.5   0.9000   0.1000

Key inputs (names preserved):
                               desc    item value input
                    Accrual rate(s)   gamma  6.16     1
           Accrual rate duration(s)       R    24    12
             Control hazard rate(s) lambdaC 0.116 0.116
            Control dropout rate(s)     eta 0.017 0.017
       Experimental dropout rate(s)    etaE 0.017  etaE
 Event and dropout rate duration(s)       S  NULL     S

Test: checking test.type = 1

Group sequential design (method=LachinFoulkes; k=4 analyses; One-sided (efficacy only))
N=122.2 subjects | D=88.0 events | T=36.0 study duration | accrual=24.0 Accrual duration | minfup=12.0 minimum follow-up | ratio=1 randomization ratio (experimental/control)

Spending functions:
  Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.

Analysis summary:
Method: LachinFoulkes 
   Analysis              Value Efficacy
  IA 1: 25%                  Z   3.1554
      N: 64        p (1-sided)   0.0008
 Events: 23       ~HR at bound   0.2605
  Month: 12   P(Cross) if HR=1   0.0008
            P(Cross) if HR=0.5   0.0644
  IA 2: 50%                  Z   2.8183
      N: 98        p (1-sided)   0.0024
 Events: 45       ~HR at bound   0.4276
  Month: 19   P(Cross) if HR=1   0.0030
            P(Cross) if HR=0.5   0.3151
  IA 3: 75%                  Z   2.4390
     N: 124        p (1-sided)   0.0074
 Events: 67       ~HR at bound   0.5486
  Month: 25   P(Cross) if HR=1   0.0089
            P(Cross) if HR=0.5   0.6631
      Final                  Z   2.0136
     N: 124        p (1-sided)   0.0220
 Events: 89       ~HR at bound   0.6510
  Month: 36   P(Cross) if HR=1   0.0250
            P(Cross) if HR=0.5   0.9000

Key inputs (names preserved):
                               desc    item value input
                    Accrual rate(s)   gamma 5.092     1
           Accrual rate duration(s)       R    24    12
             Control hazard rate(s) lambdaC 0.116 0.116
            Control dropout rate(s)     eta 0.017 0.017
       Experimental dropout rate(s)    etaE 0.017  etaE
 Event and dropout rate duration(s)       S  NULL     S

Test: checking ratio = 0.6

Group sequential design (method=LachinFoulkes; k=4 analyses; Two-sided asymmetric with binding futility)
N=157.1 subjects | D=117.0 events | T=36.0 study duration | accrual=24.0 Accrual duration | minfup=12.0 minimum follow-up | ratio=0.6 randomization ratio (experimental/control)

Spending functions:
  Efficacy bounds derived using a Hwang-Shih-DeCani spending function with gamma = -4.
  Futility bounds derived using a Kim-DeMets (power) spending function with rho = 0.

Analysis summary:
Method: LachinFoulkes 
    Analysis              Value Efficacy Futility
   IA 1: 25%                  Z   3.1554   0.1555
       N: 80        p (1-sided)   0.0008   0.4382
  Events: 30       ~HR at bound   0.2996   0.9424
   Month: 12   P(Cross) if HR=1   0.0008   0.5618
             P(Cross) if HR=0.5   0.0877   0.0500
   IA 2: 50%                  Z   2.8175   0.7616
      N: 123        p (1-sided)   0.0024   0.2231
  Events: 59       ~HR at bound   0.4672   0.8141
   Month: 19   P(Cross) if HR=1   0.0030   0.8116
             P(Cross) if HR=0.5   0.4004   0.0707
   IA 3: 75%                  Z   2.4200   1.3357
      N: 158        p (1-sided)   0.0078   0.0908
  Events: 88       ~HR at bound   0.5865   0.7449
   Month: 25   P(Cross) if HR=1   0.0089   0.9300
             P(Cross) if HR=0.5   0.7493   0.0866
       Final                  Z   1.8598   1.8598
      N: 158        p (1-sided)   0.0315   0.0315
 Events: 117       ~HR at bound   0.7011   0.7011
   Month: 36   P(Cross) if HR=1   0.0249   0.9751
             P(Cross) if HR=0.5   0.9000   0.1000

Key inputs (names preserved):
                               desc    item value input
                    Accrual rate(s)   gamma 6.548     1
           Accrual rate duration(s)       R    24    12
             Control hazard rate(s) lambdaC 0.116 0.116
            Control dropout rate(s)     eta 0.017 0.017
       Experimental dropout rate(s)    etaE 0.017  etaE
 Event and dropout rate duration(s)       S  NULL     S


Try the gsDesign package in your browser

Any scripts or data that you put into this service are public.

gsDesign documentation built on Feb. 15, 2026, 5:06 p.m.