Hyperg | R Documentation |
Hypergeometric functions as per the Gnu Scientific Library reference manual
section 7.21 and AMS-55, chapters 13 and 15. These functions are
declared in header file gsl_sf_hyperg.h
hyperg_0F1(c, x, give=FALSE, strict=TRUE) hyperg_1F1_int(m, n, x, give=FALSE, strict=TRUE) hyperg_1F1(a, b, x, give=FALSE, strict=TRUE) hyperg_U_int(m, n, x, give=FALSE, strict=TRUE) hyperg_U(a, b, x, give=FALSE, strict=TRUE) hyperg_2F1(a, b, c, x, give=FALSE, strict=TRUE) hyperg_2F1_conj(aR, aI, c, x, give=FALSE, strict=TRUE) hyperg_2F1_renorm(a, b, c, x, give=FALSE, strict=TRUE) hyperg_2F1_conj_renorm(aR, aI, c, x, give=FALSE, strict=TRUE) hyperg_2F0(a, b, x, give=FALSE, strict=TRUE)
x |
input: real values |
a,b,c |
input: real values |
m,n |
input: integer values |
aR,aI |
input: real values |
give |
Boolean with |
strict |
Boolean, with |
“The circle of convergence of the Gauss hypergeometric series is the unit circle |z|=1” (AMS, page 556).
There is a known issue in hyperg_2F1()
in GSL-2.6,
https://savannah.gnu.org/bugs/?54998 and the package returns the
erroneous value given by GSL.
Robin K. S. Hankin
https://www.gnu.org/software/gsl/
hyperg_0F1(0.1,0.55) hyperg_1F1_int(2,3,0.555) hyperg_1F1(2.12312,3.12313,0.555) hyperg_U_int(2, 3, 0.555) hyperg_U(2.234, 3.234, 0.555)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.