Nothing
# Project: gspcr
# Objective: Test cp_LRT function
# Author: Edoardo Costantini
# Created: 2023-04-18
# Modified: 2023-04-18
# Notes:
# Define tolerance for differences
tol <- 1e-5
# Test: output class -----------------------------------------------------------
# Fit a nested model
nested <- glm(mpg ~ cyl + disp, data = mtcars)
# Fit a complex model
complex <- glm(mpg ~ cyl + disp + hp + am, data = mtcars)
# Compute log-likelihood statistic with your function
LRT_M <- cp_LRT(
ll_restricted = logLik(nested),
ll_full = logLik(complex)
)
# Atomic numeric vector
testthat::expect_true(is.numeric(LRT_M))
# Length 1
testthat::expect_true(length(LRT_M) == 1)
# Test: manual computation = lmtest::lrtest output -----------------------------
# Likelihood ratio test
LRT_test <- lmtest::lrtest(nested, complex)
# Extract the LRT value
LRT_R <- LRT_test$Chisq[2]
# R equal to manual
testthat::expect_true(LRT_R - LRT_M < tol)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.