Getting Started with gtregression"

knitr::include_graphics("../man/figures/gtregression_hex.png")

gtregression

gtregression is an R package that simplifies regression modeling and generates publication-ready tables using the gtsummary ecosystem. It supports a variety of regression approaches with built-in tools for model diagnostics, selection, and confounder identification—all designed to provide beginner and intermediate R users with clean, interpretable output.

This package was created with the aim of empowering R users in low- and middle-income countries (LMICs) by offering a simpler and more accessible coding experience. We sincerely thank the authors and contributors of foundational R packages such as gtsummary, MASS, RISKS, dplyr, and others—without whom this project would not have been possible.

Table of Contents

Vision {#vision}

At its core, gtregression is more than just a statistical tool—it is a commitment to open access, simplicity, and inclusivity in health data science. Our team is driven by the vision of empowering researchers, students, and public health professionals in LMICs through user-friendly, well-documented tools that minimize coding burden and maximize interpretability.

We believe in the democratization of data science and aim to promote open-source resources for impactful and equitable research globally.

Features {#features}

Installation {#installation}

# Install from CRAN
install.packages("gtregression")

# Or install the development version from GitHub
devtools::install_github("ThinkDenominator/gtregression")

Quick Start {#quick-start}

# Load necessary libraries
library(gtregression)

# Load example dataset
data("data_PimaIndiansDiabetes", package="gtregression")

# Convert diabetes outcome to binary and create categorical variables
pima_data <- data_PimaIndiansDiabetes |>
  mutate(diabetes = ifelse(diabetes == "pos", 1, 0)) |>
  mutate(bmi = case_when(
    mass < 25 ~ "Normal",
    mass >= 25 & mass < 30 ~ "Overweight",
    mass >= 30 ~ "Obese",
    TRUE ~ NA_character_),                                       
    bmi = factor(bmi, levels = c("Normal", "Overweight", "Obese")),
    age_cat = case_when(
      age < 30 ~ "Young",
      age >= 30 & age < 50 ~ "Middle-aged",
      age >= 50 ~ "Older"),
    age_cat = factor(age_cat, levels = c("Young", "Middle-aged", "Older")),
    npreg_cat = ifelse(pregnant > 2, "High parity", "Low parity"),
    npreg_cat = factor(npreg_cat, levels = c("Low parity", "High parity")),
    glucose_cat= case_when(glucose<=140~ "Normal", glucose>140~"High"),
    glucose_cat= factor(glucose_cat, levels = c("Normal", "High")),
    bp_cat = case_when(
      pressure < 80 ~ "Normal",
      pressure >= 80 ~ "High"
    ),
    bp_cat= factor(bp_cat, levels = c("Normal", "High")),
    triceps_cat = case_when(
      triceps < 23 ~ "Normal",
      triceps >= 23 ~ "High"
    ),
    triceps_cat= factor(triceps_cat, levels = c("Normal", "High")),
    insulin_cat = case_when(
      insulin < 30 ~ "Low",
      insulin >= 30 & insulin < 150 ~ "Normal",
      insulin >= 150 ~ "High"
    ),
    insulin_cat = factor(insulin_cat, levels = c("Low", "Normal", "High"))
  ) |>
  mutate(
    dpf_cat = case_when(
      pedigree <= 0.2 ~ "Low Genetic Risk",
      pedigree > 0.2 & pedigree <= 0.5 ~ "Moderate Genetic Risk",
      pedigree > 0.5 ~ "High Genetic Risk"
    )
  ) |>
  mutate(dpf_cat = factor(dpf_cat, 
              levels = c("Low Genetic Risk", 
                          "Moderate Genetic Risk", 
                          "High Genetic Risk"))) |>
  mutate(diabetes_cat= case_when(diabetes== 1~ "Diabetes positive", 
                                TRUE~ "Diabetes negative")) |>
  mutate(diabetes_cat= factor(diabetes_cat, 
                        levels = c("Diabetes negative","Diabetes positive" )))

# Descriptive statistics table
exposures <- c("bmi", "age_cat", "npreg_cat", "bp_cat", "triceps_cat",
               "insulin_cat", "dpf_cat")

# Create a descriptive table by diabetes category
des_tbl = descriptive_table(data= pima_data, 
                             exposures = exposures, 
                             by= "diabetes_cat")

# Check the data compatibility
dissect(pima_data)

# Univariable regression
uni_tbl = uni_reg(
  data = pima_data,
  outcome = "diabetes",
  exposures = exposures,
  approach = "logit"
)

# check models and summaries
uni_tbl$models
uni_tbl$model_summaries

# Plot univariable regression results
plot_reg(uni_tbl, 
         title = "Univariable Regression Results")

# multivariable regression
multi_tbl = multi_reg(
  data = pima_data,
  outcome = "diabetes",
  exposures = exposures,
  approach = "logit"
)

# check models and summaries
multi_tbl$models
multi_tbl$model_summaries

# Plot univariable regression results
plot_reg(multi_tbl, 
         title = "Multivariable Regression Results")

# combined plots
plot_reg_combine(
  uni_tbl, 
  multi_tbl, 
  title = "Univariable vs Multivariable Regression Results")

# combine the tables
merge_table(des_tbl, uni_tbl, multi_tbl, 
            spanners = c("**Descriptive**",
            "**Univariate**", 
            "**Multivariable**"))

# Save the table as a Word document
save_table(des_tbl, filename = "des_tbl", format = "docx")

save_docx(
  tables = list(des_tbl, uni_tbl, multi_tbl),
  filename = "Outputs.docx")

# Stratified regression
stratified_uni_reg(pima_data,
                     outcome= "diabetes",
                     exposures =c("bmi", "insulin_cat", "age_cat", "dpf_cat"),
                     approach = "logit",
                     stratifier = "glucose_cat")

stratified_multi_reg(pima_data,
                     outcome= "diabetes",
                     exposures =c("bmi", "insulin_cat", "age_cat", "dpf_cat"),
                     approach = "logit",
                     stratifier = "glucose_cat")

# Check model convergence
check_convergence(pima_data, 
                  exposures = exposures, 
                  outcome = "diabetes", 
                  approach = "logit", 
                  multivariate = F)

check_convergence(pima_data, 
                  exposures = exposures, 
                  outcome = "diabetes", 
                  approach = "logit", 
                  multivariate = T)


# identify confounders
identify_confounder(pima_data,
                    outcome = "diabetes",
                    exposure = "npreg_cat",
                    potential_confounder = "bp_cat",
                    approach = "logit")

# check interactions
interaction_models(pima_data,
                   outcome,
                   exposure = "bmi",
                   effect_modifier = "glucose_cat",
                   covariates = c("insulin_cat", "age_cat", "dpf_cat"),
                   approach = "logit")

Key Functions {#key-functions}

Descriptive & Compatibility Tools

| Function Name | Purpose | |----------------------|---------------------------------------| | descriptive_table()| Summarise exposures by outcome groups | | dissect() | Check outcome-exposure compatibility |

Regression Functions - Fit univariate and multivariable models

| Function Name | Purpose | |---------------|--------------------------------------| | uni_reg() | Univariable regression (OR/RR/IRR/β) | | multi_reg() | Multivariable regression |

Regression Functions by stratifier

| Function Name | Purpose | |--------------------------|-------------------------------------| | stratified_uni_reg() | Stratified univariable regression | | stratified_multi_reg() | Stratified multivariable regression |

Model Diagnostics & Selection

| Function Name | Purpose | |-----------------------|--------------------------------------------------| | check_convergence() | Evaluate model convergence and max fitted values | | select_models() | Stepwise model selection (AIC/BIC/adjusted R²) |

Confounding & Interaction

| Function Name | Purpose | |------------------------|------------------------------------------------| | identify_confounder() | Confounding assessment via % change or MH method | | interaction_models() | Compare models with and without interaction terms |

Plots & Exports

| Function Name | Purpose | |----------------------|------------------------------------------------| | plot_reg() | Forest plot for a single regression model | | plot_reg_combine() | Side-by-side forest plots for uni/multi models | | modify_table() | Customize column labels or output structure | | save_table() | Export table to .html, .csv, .docx | | save_docx() | Save table as Word document (.docx) | | save_plot() | Save plot as .png, .pdf, etc. | | merge_tables() | Combine descriptive and regression tables |

Conclusion

The gtregression package simplifies regression coding and produces publication-ready tables with interpretation notes. It enables beginners to explore a variety of regression models with ease, transparency, and reproducibility. Explore the documentation for each function to discover additional options and customization features.



Try the gtregression package in your browser

Any scripts or data that you put into this service are public.

gtregression documentation built on Aug. 18, 2025, 5:23 p.m.