plot_reg | R Documentation |
Creates a forest plot from a 'gtsummary' object. Supports both univariate and multivariable models with hierarchical labels for categorical variables. Designed to work seamlessly with outputs from functions like 'uni_reg()' and 'multi_reg()'.
plot_reg(
tbl,
title = NULL,
ref_line = 1,
order_y = NULL,
log_x = FALSE,
xlim = NULL,
breaks = NULL,
point_color = "#1F77B4",
errorbar_color = "#4C4C4C",
base_size = 14,
show_ref = TRUE
)
tbl |
A 'gtsummary' object from regression functions |
title |
Optional plot title (character). |
ref_line |
Numeric value for the reference line (default = 1). |
order_y |
Optional character vector to the customise y-axis order |
log_x |
Logical. If 'TRUE', uses a logarithmic x-axis (default = FALSE). |
xlim |
Optional numeric vector specifying x-axis limits |
breaks |
Optional numeric vector for x-axis tick breaks. |
point_color |
Color of the points (default is automatic). |
errorbar_color |
Color of the error bars (default is automatic). |
base_size |
Base font size for text elements. |
show_ref |
Logical. If 'TRUE', includes reference in the plot. |
A 'ggplot2' object representing the forest plot.
if (requireNamespace("mlbench", quietly = TRUE)) {
data("PimaIndiansDiabetes2", package = "mlbench")
library(dplyr)
library(gtregression)
# Prepare data
pima <- PimaIndiansDiabetes2 |>
mutate(
diabetes = ifelse(diabetes == "pos", 1, 0),
bmi_cat = cut(
mass,
breaks = c(-Inf, 18.5, 24.9, 29.9, Inf),
labels = c("Underweight", "Normal", "Overweight", "Obese"))
)
# Univariate logistic regression
uni_rr <- uni_reg(
data = pima,
outcome = "diabetes",
exposures = c("age", "bmi_cat"),
approach = "logit"
)
plot_reg(uni_rr)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.