uni_reg | R Documentation |
Performs univariate regression for each exposure on a binary, continuous, or count outcome. Depending on 'approach', returns either Odds Ratios (OR), Risk Ratios (RR), or Incidence Rate Ratios (IRR).
uni_reg(data, outcome, exposures, approach = "logit")
data |
A data frame containing the variables. |
outcome |
outcome variable (binary, continuous, or count). |
exposures |
A vector of predictor variables. |
approach |
Modeling approach to use. One of: '"logit"' (OR), '"log-binomial"' (RR), '"poisson"' (IRR), '"robpoisson"' (RR), '"linear"' (Beta coefficients), '"negbin"' (IRR) |
This function requires the following packages: 'dplyr', 'purrr', 'gtsummary', 'risks'.
A list of class 'uni_reg' and 'gtsummary::tbl_stack', including:
A publication-ready regression table ('tbl_stack')
Accessor elements:
'$models': Fitted regression models for each exposure
'$model_summaries': Tidy model summaries
'$reg_check': Diagnostics (only for linear regression)
multi_reg
, plot_reg
data(PimaIndiansDiabetes2, package = "mlbench")
library(dplyr)
pima <- PimaIndiansDiabetes2 |>
dplyr::mutate(diabetes = ifelse(diabetes == "pos", 1, 0))
uni_reg(pima, outcome = "diabetes", exposures = "age", approach = "logit")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.