h2o.fair_pd_plot | R Documentation |
Partial dependence plot per protected group.
h2o.fair_pd_plot(model, newdata, protected_columns, column, autoscale = TRUE)
model |
H2O Model Object |
newdata |
H2OFrame |
protected_columns |
List of categorical columns that contain sensitive information such as race, gender, age etc. |
column |
String containing column name. |
autoscale |
If “True“, try to guess when to use log transformation on X axis. |
ggplot2 object
## Not run:
library(h2o)
h2o.init()
data <- h2o.importFile(paste0("https://s3.amazonaws.com/h2o-public-test-data/smalldata/",
"admissibleml_test/taiwan_credit_card_uci.csv"))
x <- c('LIMIT_BAL', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1',
'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2',
'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6')
y <- "default payment next month"
protected_columns <- c('SEX', 'EDUCATION')
for (col in c(y, protected_columns))
data[[col]] <- as.factor(data[[col]])
splits <- h2o.splitFrame(data, 0.8)
train <- splits[[1]]
test <- splits[[2]]
reference <- c(SEX = "1", EDUCATION = "2") # university educated man
favorable_class <- "0" # no default next month
gbm <- h2o.gbm(x, y, training_frame = train)
h2o.fair_pd_plot(gbm, test, protected_columns, "AGE")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.