h2o.inspect_model_fairness | R Documentation |
Produce plots and dataframes related to a single model fairness.
h2o.inspect_model_fairness(
model,
newdata,
protected_columns,
reference,
favorable_class,
metrics = c("auc", "aucpr", "f1", "p.value", "selectedRatio", "total"),
background_frame = NULL
)
model |
H2O Model Object |
newdata |
H2OFrame |
protected_columns |
List of categorical columns that contain sensitive information such as race, gender, age etc. |
reference |
List of values corresponding to a reference for each protected columns. If set to NULL, it will use the biggest group as the reference. |
favorable_class |
Positive/favorable outcome class of the response. |
metrics |
Character vector of metrics to show. |
background_frame |
Optional frame, that is used as the source of baselines for the marginal SHAP. Setting it enables calculating SHAP in more models but it can be more time and memory consuming. |
H2OExplanation object
## Not run:
library(h2o)
h2o.init()
data <- h2o.importFile(paste0("https://s3.amazonaws.com/h2o-public-test-data/smalldata/",
"admissibleml_test/taiwan_credit_card_uci.csv"))
x <- c('LIMIT_BAL', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1',
'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2',
'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6')
y <- "default payment next month"
protected_columns <- c('SEX', 'EDUCATION')
for (col in c(y, protected_columns))
data[[col]] <- as.factor(data[[col]])
splits <- h2o.splitFrame(data, 0.8)
train <- splits[[1]]
test <- splits[[2]]
reference <- c(SEX = "1", EDUCATION = "2") # university educated man
favorable_class <- "0" # no default next month
gbm <- h2o.gbm(x, y, training_frame = train)
h2o.inspect_model_fairness(gbm, test, protected_columns = protected_columns,
reference = reference, favorable_class = favorable_class)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.