Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4,
fig.height = 4
)
## ----setup, echo = TRUE, message = FALSE--------------------------------------
library(habtools)
library(raster)
library(dplyr)
library(ggplot2)
## -----------------------------------------------------------------------------
# Load a raster
dem <- horseshoe
res(dem)
plot(dem)
## -----------------------------------------------------------------------------
dem1 <- dem_crop(horseshoe, x0 = -466, y0 = 1269, L = 2, plot = TRUE)
plot(dem1)
## -----------------------------------------------------------------------------
hr(dem1)
## ----eval=FALSE, include=FALSE------------------------------------------------
# # Height variation method
# rg(dem1, method = "hvar", L0 = 0.05, parallel = FALSE) # Parallel = TRUE enables parallel processing using multiple cores to speed up the calculations using the height variation method. Only use this if you have a powerful computer with at least four cores.
#
# # Area method
# rg(dem1, method = "area", L0 = 0.05)
## ---- eval=FALSE--------------------------------------------------------------
# # Height variation method
# rg(dem1, method = "hvar", L0 = 0.05, parallel = FALSE) # Parallel = TRUE enables parallel processing using multiple cores to speed up the calculations using the height variation method. Only use this if you have a powerful computer with at least four cores.
# #> [1] 1.6123
#
# # Area method
# rg(dem1, method = "area", L0 = 0.05)
# #> [1] 1.619947
## -----------------------------------------------------------------------------
# Height variation method
fd(dem1, method = "hvar", lvec = c(0.25, 0.5, 1, 2), plot = TRUE, diagnose = TRUE)
## -----------------------------------------------------------------------------
# Area method
fd(dem1, method = "area", lvec = c(0.03125, 0.0625, 0.125, 0.25), diagnose = TRUE)
## ----eval=FALSE, echo=FALSE---------------------------------------------------
# rdh(dem1, lvec = c(0.125, 0.25, 0.5, 1, 2), method_fd = "hvar", method_rg = "hvar")
# rdh(dem1, lvec = c( 0.125, 0.25, 0.5, 1, 2), method_fd = "hvar")
# rdh(dem1, lvec = c(0.03125, 0.0625, 0.125, 0.25), method_fd = "area")
## ----eval=FALSE---------------------------------------------------------------
# rdh(dem1, lvec = c(0.125, 0.25, 0.5, 1, 2), method_fd = "hvar", method_rg = "hvar")
# #> fd calculation using hvar method.
# #> rg calculation using hvar method.
# #> L0 is set to 0.125.
# #> R D H
# #> 1 1.552032 2.300395 0.9766939
# rdh(dem1, lvec = c( 0.125, 0.25, 0.5, 1, 2), method_fd = "hvar")
# #> fd calculation using hvar method.
# #> rg calculation using area method.
# #> L0 is set to the resolution of the raster: 0.01.
# #> R D H
# #> 1 2.12501 2.300395 0.9766939
# rdh(dem1, lvec = c(0.03125, 0.0625, 0.125, 0.25), method_fd = "area")
# #> fd calculation using area method.
# #> rg calculation using area method.
# #> L0 is set to the resolution of the raster: 0.01.
# #> R D H
# #> 1 2.12501 2.231573 0.9766939
## -----------------------------------------------------------------------------
dem_list <- dem_split(dem, size = 2)
# calculate one metric for all squares
sapply(dem_list, hr)
# calculate multiple metrics
data_rdh <- suppressMessages(lapply(dem_list, rdh, method_fd = "hvar", lvec = c(0.25, 0.5, 1, 2))) %>%
bind_rows()
## -----------------------------------------------------------------------------
ggplot(data_rdh) +
geom_point(aes(x = R, y = H, color = D, size = D)) +
theme_classic()
## -----------------------------------------------------------------------------
dem <- dem_sample(horseshoe, L=2, plot=TRUE)
plot(dem)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.