Nothing
#' Posterior of normalized asymptotic power prior (NAPP)
#'
#' Sample from the posterior distribution of a GLM using the normalized asymptotic power prior (NAPP) by
#' Ibrahim et al. (2015) <doi:10.1002/sim.6728>.
#'
#' The normalized asymptotic power prior (NAPP) assumes that the regression coefficients and logarithm of the
#' dispersion parameter are a multivariate normal distribution with mean equal to the maximum likelihood
#' estimate of the historical data and covariance matrix equal to \eqn{a_0^{-1}} multiplied by the inverse Fisher
#' information matrix of the historical data, where \eqn{a_0} is the power prior parameter (treated as random).
#'
#' @include data_checks.R
#' @include get_stan_data.R
#'
#' @export
#'
#' @param formula a two-sided formula giving the relationship between the response variable and covariates.
#' @param family an object of class `family`. See \code{\link[stats:family]{?stats::family}}.
#' @param data.list a list of `data.frame`s. The first element in the list is the current data, and the rest
#' are the historical datasets.
#' @param offset.list a list of vectors giving the offsets for each data. The length of `offset.list` is equal to
#' the length of `data.list`. The length of each element of `offset.list` is equal to the number
#' of rows in the corresponding element of `data.list`. Defaults to a list of vectors of 0s.
#' @param a0.shape1 first shape parameter for the i.i.d. beta prior on a0 vector. When \code{a0.shape1 == 1} and
#' \code{a0.shape2 == 1}, a uniform prior is used.
#' @param a0.shape2 second shape parameter for the i.i.d. beta prior on a0 vector. When \code{a0.shape1 == 1} and
#' \code{a0.shape2 == 1}, a uniform prior is used.
#' @param iter_warmup number of warmup iterations to run per chain. Defaults to 1000. See the argument `iter_warmup` in
#' `sample()` method in cmdstanr package.
#' @param iter_sampling number of post-warmup iterations to run per chain. Defaults to 1000. See the argument `iter_sampling`
#' in `sample()` method in cmdstanr package.
#' @param chains number of Markov chains to run. Defaults to 4. See the argument `chains` in `sample()` method in
#' cmdstanr package.
#' @param ... arguments passed to `sample()` method in cmdstanr package (e.g., `seed`, `refresh`, `init`).
#'
#' @return
#' The function returns an object of class `draws_df` giving posterior samples, with an attribute called 'data' which includes
#' the list of variables specified in the data block of the Stan program.
#'
#' @references
#' Ibrahim, J. G., Chen, M., Gwon, Y., and Chen, F. (2015). The power prior: Theory and applications. Statistics in Medicine, 34(28), 3724–3749.
#'
#' @examples
#' if (instantiate::stan_cmdstan_exists()) {
#' data(actg019)
#' data(actg036)
#' ## take subset for speed purposes
#' actg019 = actg019[1:100, ]
#' actg036 = actg036[1:50, ]
#' data_list = list(currdata = actg019, histdata = actg036)
#' glm.napp(
#' formula = cd4 ~ treatment + age + race,
#' family = poisson('log'),
#' data.list = data_list,
#' chains = 1, iter_warmup = 500, iter_sampling = 1000
#' )
#' }
glm.napp = function(
formula,
family,
data.list,
offset.list = NULL,
a0.shape1 = 1,
a0.shape2 = 1,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
...
) {
## get Stan data for NAPP
standat = get.stan.data.napp(
formula = formula,
family = family,
data.list = data.list,
offset.list = offset.list,
a0.shape1 = a0.shape1,
a0.shape2 = a0.shape2
)
glm_napp = instantiate::stan_package_model(
name = "glm_napp",
package = "hdbayes"
)
## fit model in cmdstanr
fit = glm_napp$sample(data = standat,
iter_warmup = iter_warmup, iter_sampling = iter_sampling, chains = chains,
...)
## rename parameters
p = standat$p
X = standat$X
K = standat$K
oldnames = paste0("beta[", 1:p, "]")
newnames = colnames(X)
if ( !family$family %in% c('binomial', 'poisson') ) {
oldnames = c(oldnames, 'dispersion[1]')
newnames = c(newnames, 'dispersion')
}
oldnames = c(oldnames, paste0('a0s[', 1:K, ']'))
newnames = c(newnames, paste0('a0_hist_', 1:K))
d = rename.params(fit = fit, oldnames = oldnames, newnames = newnames)
## add data used for the variables specified in the data block of the Stan program as an attribute
attr(x = d, which = 'data') = standat
return(d)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.