Nothing
#' Posterior of normalized power prior (NPP)
#'
#' Sample from the posterior distribution of a GLM using the normalized power prior (NPP) by Duan et al.
#' (2006) <doi:10.1002/env.752>.
#'
#' Before using this function, users must estimate the logarithm of the normalizing constant across a
#' range of different values for the power prior parameter (\eqn{a_0}), possibly smoothing techniques
#' over a find grid. The power prior parameters (\eqn{a_0}'s) are treated as random with independent
#' beta priors. The initial priors on the regression coefficients are independent normal priors. The
#' current and historical data sets are assumed to have a common dispersion parameter with a
#' half-normal prior (if applicable). For normal linear models, the exact normalizing constants for
#' NPP can be computed. See the implementation in [lm.npp()].
#'
#'
#' @include data_checks.R
#' @include glm_npp_lognc.R
#' @include get_stan_data.R
#'
#' @export
#'
#' @param formula a two-sided formula giving the relationship between the response variable and covariates.
#' @param family an object of class `family`. See \code{\link[stats:family]{?stats::family}}.
#' @param data.list a list of `data.frame`s. The first element in the list is the current data, and the rest
#' are the historical data sets.
#' @param offset.list a list of vectors giving the offsets for each data. The length of `offset.list` is equal to
#' the length of `data.list`. The length of each element of `offset.list` is equal to the number
#' of rows in the corresponding element of `data.list`. Defaults to a list of vectors of 0s.
#' @param beta.mean a scalar or a vector whose dimension is equal to the number of regression coefficients giving
#' the mean parameters for the initial prior on regression coefficients. If a scalar is provided,
#' `beta.mean` will be a vector of repeated elements of the given scalar. Defaults to a vector of 0s.
#' @param beta.sd a scalar or a vector whose dimension is equal to the number of regression coefficients giving
#' the sd parameters for the initial prior on regression coefficients. If a scalar is provided,
#' same as for `beta.mean`. Defaults to a vector of 10s.
#' @param disp.mean location parameter for the half-normal prior on dispersion parameter. Defaults to 0.
#' @param disp.sd scale parameter for the half-normal prior on dispersion parameter. Defaults to 10.
#' @param a0.lognc a vector giving values of the power prior parameter for which the logarithm of the normalizing
#' constant has been evaluated.
#' @param lognc an S by T matrix where S is the length of `a0.lognc`, T is the number of historical data sets, and
#' the j-th column, j = 1, ..., T, is a vector giving the logarithm of the normalizing constant (as
#' estimated by [glm.npp.lognc()] for `a0.lognc` using the j-th historical data set.
#' @param a0.shape1 first shape parameter for the i.i.d. beta prior on \eqn{a_0} vector. When \code{a0.shape1 == 1} and
#' \code{a0.shape2 == 1}, a uniform prior is used.
#' @param a0.shape2 second shape parameter for the i.i.d. beta prior on \eqn{a_0} vector. When \code{a0.shape1 == 1} and
#' \code{a0.shape2 == 1}, a uniform prior is used.
#' @param a0.lower a scalar or a vector whose dimension is equal to the number of historical data sets giving the
#' lower bounds for each element of the \eqn{a_0} vector. If a scalar is provided, `a0.lower` will be a
#' vector of repeated elements of the given scalar. Defaults to a vector of 0s.
#' @param a0.upper a scalar or a vector whose dimension is equal to the number of historical data sets giving the
#' upper bounds for each element of the \eqn{a_0} vector. If a scalar is provided, same as for `a0.lower`.
#' Defaults to a vector of 1s.
#' @param iter_warmup number of warmup iterations to run per chain. Defaults to 1000. See the argument `iter_warmup`
#' in `sample()` method in cmdstanr package.
#' @param iter_sampling number of post-warmup iterations to run per chain. Defaults to 1000. See the argument `iter_sampling`
#' in `sample()` method in cmdstanr package.
#' @param chains number of Markov chains to run. Defaults to 4. See the argument `chains` in `sample()` method
#' in cmdstanr package.
#' @param ... arguments passed to `sample()` method in cmdstanr package (e.g., `seed`, `refresh`, `init`).
#'
#' @return
#' The function returns an object of class `draws_df` giving posterior samples, with an attribute called 'data' which includes
#' the list of variables specified in the data block of the Stan program.
#'
#' @seealso [glm.npp.lognc()]
#'
#' @references
#' Duan, Y., Ye, K., and Smith, E. P. (2005). Evaluating water quality using power priors to incorporate historical information. Environmetrics, 17(1), 95–106.
#'
#' @examples
#' \donttest{
#' if(requireNamespace("parallel")){
#' data(actg019)
#' data(actg036)
#' ## take subset for speed purposes
#' actg019 = actg019[1:100, ]
#' actg036 = actg036[1:50, ]
#'
#' library(parallel)
#' ncores = 2
#' data.list = list(data = actg019, histdata = actg036)
#' formula = cd4 ~ treatment + age + race
#' family = poisson()
#' a0 = seq(0, 1, length.out = 11)
#' if (instantiate::stan_cmdstan_exists()) {
#' ## call created function
#' ## wrapper to obtain log normalizing constant in parallel package
#' logncfun = function(a0, ...){
#' hdbayes::glm.npp.lognc(
#' formula = formula, family = family, a0 = a0, histdata = data.list[[2]],
#' ...
#' )
#' }
#'
#' cl = makeCluster(ncores)
#' clusterSetRNGStream(cl, 123)
#' clusterExport(cl, varlist = c('formula', 'family', 'data.list'))
#' a0.lognc = parLapply(
#' cl = cl, X = a0, fun = logncfun, iter_warmup = 500,
#' iter_sampling = 1000, chains = 1, refresh = 0
#' )
#' stopCluster(cl)
#' a0.lognc = data.frame( do.call(rbind, a0.lognc) )
#'
#' ## sample from normalized power prior
#' glm.npp(
#' formula = formula,
#' family = family,
#' data.list = data.list,
#' a0.lognc = a0.lognc$a0,
#' lognc = matrix(a0.lognc$lognc, ncol = 1),
#' chains = 1, iter_warmup = 500, iter_sampling = 1000,
#' refresh = 0
#' )
#' }
#' }
#' }
glm.npp = function(
formula,
family,
data.list,
a0.lognc,
lognc,
offset.list = NULL,
beta.mean = NULL,
beta.sd = NULL,
disp.mean = NULL,
disp.sd = NULL,
a0.shape1 = 1,
a0.shape2 = 1,
a0.lower = NULL,
a0.upper = NULL,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
...
) {
## get Stan data for NPP
standat = get.stan.data.npp(
formula = formula,
family = family,
data.list = data.list,
a0.lognc = a0.lognc,
lognc = lognc,
offset.list = offset.list,
beta.mean = beta.mean,
beta.sd = beta.sd,
disp.mean = disp.mean,
disp.sd = disp.sd,
a0.shape1 = a0.shape1,
a0.shape2 = a0.shape2,
a0.lower = a0.lower,
a0.upper = a0.upper
)
glm_npp_posterior = instantiate::stan_package_model(
name = "glm_npp_posterior",
package = "hdbayes"
)
## fit model in cmdstanr
fit = glm_npp_posterior$sample(data = standat,
iter_warmup = iter_warmup, iter_sampling = iter_sampling, chains = chains,
...)
## rename parameters
p = standat$p
X = standat$X
K = standat$K
oldnames = paste0("beta[", 1:p, "]")
newnames = colnames(X)
if ( !family$family %in% c('binomial', 'poisson') ) {
oldnames = c(oldnames, 'dispersion[1]')
newnames = c(newnames, 'dispersion')
}
oldnames = c(oldnames, paste0('a0s[', 1:(K-1), ']'))
newnames = c(newnames, paste0('a0_hist_', 1:(K-1)))
d = rename.params(fit = fit, oldnames = oldnames, newnames = newnames)
## add data used for the variables specified in the data block of the Stan program as an attribute
attr(x = d, which = 'data') = standat
return(d)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.