Nothing
#' Posterior of power prior (PP) with fixed \eqn{a_0}
#'
#' Sample from the posterior distribution of a GLM using the power prior (PP) by Ibrahim and Chen (2000) <doi:10.1214/ss/1009212673>.
#'
#' The power prior parameters (\eqn{a_0}'s) are treated as fixed. The initial priors on the regression coefficients
#' are independent normal priors. The current and historical data sets are assumed to have a common dispersion parameter
#' with a half-normal prior (if applicable).
#'
#' @include data_checks.R
#' @include get_stan_data.R
#'
#' @export
#'
#' @param formula a two-sided formula giving the relationship between the response variable and covariates.
#' @param family an object of class `family`. See \code{\link[stats:family]{?stats::family}}.
#' @param data.list a list of `data.frame`s. The first element in the list is the current data, and the rest
#' are the historical data sets.
#' @param offset.list a list of vectors giving the offsets for each data. The length of `offset.list` is equal to
#' the length of `data.list`. The length of each element of `offset.list` is equal to the number
#' of rows in the corresponding element of `data.list`. Defaults to a list of vectors of 0s.
#' @param beta.mean a scalar or a vector whose dimension is equal to the number of regression coefficients giving
#' the mean parameters for the initial prior on regression coefficients. If a scalar is provided,
#' `beta.mean` will be a vector of repeated elements of the given scalar. Defaults to a vector of 0s.
#' @param beta.sd a scalar or a vector whose dimension is equal to the number of regression coefficients giving
#' the sd parameters for the initial prior on regression coefficients. If a scalar is provided,
#' same as for `beta.mean`. Defaults to a vector of 10s.
#' @param a0.vals a scalar between 0 and 1 or a vector whose dimension is equal to the number of historical
#' data sets giving the (fixed) power prior parameter for each historical data set. Each element of
#' vector should be between 0 and 1. If a scalar is provided, same as for `beta.mean`.
#' @param disp.mean location parameter for the half-normal prior on dispersion parameter. Defaults to 0.
#' @param disp.sd scale parameter for the half-normal prior on dispersion parameter. Defaults to 10.
#' @param iter_warmup number of warmup iterations to run per chain. Defaults to 1000. See the argument `iter_warmup` in
#' `sample()` method in cmdstanr package.
#' @param iter_sampling number of post-warmup iterations to run per chain. Defaults to 1000. See the argument `iter_sampling`
#' in `sample()` method in cmdstanr package.
#' @param chains number of Markov chains to run. Defaults to 4. See the argument `chains` in `sample()` method in
#' cmdstanr package.
#' @param ... arguments passed to `sample()` method in cmdstanr package (e.g., `seed`, `refresh`, `init`).
#'
#' @return
#' The function returns an object of class `draws_df` giving posterior samples, with an attribute called 'data' which includes
#' the list of variables specified in the data block of the Stan program.
#'
#' @references
#' Chen, M.-H. and Ibrahim, J. G. (2000). Power prior distributions for Regression Models. Statistical Science, 15(1).
#'
#' @examples
#' if (instantiate::stan_cmdstan_exists()) {
#' data(actg019)
#' data(actg036)
#' ## take subset for speed purposes
#' actg019 = actg019[1:100, ]
#' actg036 = actg036[1:50, ]
#' data_list = list(currdata = actg019, histdata = actg036)
#' glm.pp(
#' formula = cd4 ~ treatment + age + race,
#' family = poisson('log'),
#' data.list = data_list,
#' a0.vals = 0.5,
#' chains = 1, iter_warmup = 500, iter_sampling = 1000
#' )
#' }
glm.pp = function(
formula,
family,
data.list,
a0.vals,
offset.list = NULL,
beta.mean = NULL,
beta.sd = NULL,
disp.mean = NULL,
disp.sd = NULL,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
...
) {
## get Stan data for PP
standat = get.stan.data.pp(
formula = formula,
family = family,
data.list = data.list,
a0.vals = a0.vals,
offset.list = offset.list,
beta.mean = beta.mean,
beta.sd = beta.sd,
disp.mean = disp.mean,
disp.sd = disp.sd
)
glm_pp = instantiate::stan_package_model(
name = "glm_pp",
package = "hdbayes"
)
## fit model in cmdstanr
fit = glm_pp$sample(data = standat,
iter_warmup = iter_warmup, iter_sampling = iter_sampling, chains = chains,
...)
## rename parameters
p = standat$p
X = standat$X
oldnames = paste0("beta[", 1:p, "]")
newnames = colnames(X)
if ( !family$family %in% c('binomial', 'poisson') ) {
oldnames = c(oldnames, 'dispersion[1]')
newnames = c(newnames, 'dispersion')
}
d = rename.params(fit = fit, oldnames = oldnames, newnames = newnames)
## add data used for the variables specified in the data block of the Stan program as an attribute
attr(x = d, which = 'data') = standat
return(d)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.