View source: R/nc.hdsvm-methods.R
coef.nc.hdsvm | R Documentation |
Retrieves the coefficients at specified values of 'lambda' from a fitted 'nc.hdsvm()' model.
## S3 method for class 'nc.hdsvm'
coef(object, s = NULL, type = c("coefficients", "nonzero"), ...)
object |
Fitted 'nc.hdsvm()' object. |
s |
Values of the penalty parameter 'lambda' for which coefficients are requested. Defaults to the entire sequence used during the model fit. |
type |
Type of prediction required. Type '"coefficients"' computes the coefficients at the requested
values for 's'. Type '"nonzero"' returns a list of the indices of the nonzero coefficients for each
value of |
... |
Not used. |
This function extracts coefficients for specified 'lambda' values from a 'nc.hdsvm()' object. If 's', the vector of 'lambda' values, contains values not originally used in the model fitting, the 'coef' function employs linear interpolation between the closest 'lambda' values from the original sequence to estimate coefficients at the new 'lambda' values.
Returns a matrix or vector of coefficients corresponding to the specified 'lambda' values.
nc.hdsvm
, predict.nc.hdsvm
set.seed(315)
n <- 100
p <- 400
x1 <- matrix(rnorm(n / 2 * p, -0.25, 0.1), n / 2)
x2 <- matrix(rnorm(n / 2 * p, 0.25, 0.1), n / 2)
x <- rbind(x1, x2)
beta <- 0.1 * rnorm(p)
prob <- plogis(c(x %*% beta))
y <- 2 * rbinom(n, 1, prob) - 1
lam2 <- 0.01
lambda <- 10^(seq(1,-4, length.out = 30))
nc.fit <- nc.hdsvm(x = x, y = y, lambda = lambda, lam2 = lam2, pen = "scad")
nc.coefs <- coef(nc.fit, s = nc.fit$lambda[3:5])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.