View source: R/cv.nc.hdsvm-methods.R
predict.cv.nc.hdsvm | R Documentation |
Generates predictions using a fitted 'cv.nc.hdsvm()' object. This function utilizes the stored 'nchdsvm.fit' object and an optimal value of 'lambda' determined during the cross-validation process.
## S3 method for class 'cv.nc.hdsvm'
predict(
object,
newx,
s = c("lambda.1se", "lambda.min"),
type = c("class", "loss"),
...
)
object |
A fitted 'cv.nc.hdsvm()' object from which predictions are to be made. |
newx |
Matrix of new predictor values for which predictions are desired. This must be a matrix and is a required argument. |
s |
Specifies the value(s) of the penalty parameter 'lambda' at which predictions are desired. The default is 's = "lambda.1se"', representing the largest value of 'lambda' such that the cross-validation error estimate is within one standard error of the minimum. Alternatively, 's = "lambda.min"' can be used, corresponding to the minimum of the cross-validation error estimate. If 's' is numeric, these are taken as the actual values of 'lambda' to use for predictions. |
type |
Type of prediction required. Type '"class"' produces the predicted binary class labels and
type '"loss"' returns the fitted values. Default is |
... |
Not used. |
Returns a matrix or vector of predicted values corresponding to the specified 'lambda' values.
cv.nc.hdsvm
, predict.cv.nc.hdsvm
set.seed(315)
n <- 100
p <- 400
x1 <- matrix(rnorm(n / 2 * p, -0.25, 0.1), n / 2)
x2 <- matrix(rnorm(n / 2 * p, 0.25, 0.1), n / 2)
x <- rbind(x1, x2)
beta <- 0.1 * rnorm(p)
prob <- plogis(c(x %*% beta))
y <- 2 * rbinom(n, 1, prob) - 1
lam2 <- 0.01
lambda <- 10^(seq(1,-4, length.out = 30))
cv.nc.fit <- cv.nc.hdsvm(x = x, y = y, lambda = lambda, lam2 = lam2, pen = "scad")
predict(cv.nc.fit, newx = x[50:60, ], s = "lambda.min")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.