View source: R/nc.hdsvm-methods.R
predict.nc.hdsvm | R Documentation |
Produces fitted values for new predictor data using a fitted 'nc.hdsvm()' object.
## S3 method for class 'nc.hdsvm'
predict(object, newx, s = NULL, type = c("class", "loss"), ...)
object |
Fitted 'nc.hdsvm()' object from which predictions are to be derived. |
newx |
Matrix of new predictor values for which predictions are desired. This must be a matrix and is a required argument. |
s |
Values of the penalty parameter 'lambda' for which predictions are requested. Defaults to the entire sequence used during the model fit. |
type |
Type of prediction required. Type '"class"' produces the predicted binary class labels and
type '"loss"' returns the fitted values. Default is |
... |
Not used. |
This function generates predictions at specified 'lambda' values from a fitted 'nc.hdsvm()' object. It is essential to provide a new matrix of predictor values ('newx') at which these predictions are to be made.
Returns a vector or matrix of predicted values corresponding to the specified 'lambda' values.
nc.hdsvm
, coef.nc.hdsvm
set.seed(315)
n <- 100
p <- 400
x1 <- matrix(rnorm(n / 2 * p, -0.25, 0.1), n / 2)
x2 <- matrix(rnorm(n / 2 * p, 0.25, 0.1), n / 2)
x <- rbind(x1, x2)
beta <- 0.1 * rnorm(p)
prob <- plogis(c(x %*% beta))
y <- 2 * rbinom(n, 1, prob) - 1
lam2 <- 0.01
lambda <- 10^(seq(1,-4, length.out = 30))
nc.fit <- nc.hdsvm(x = x, y = y, lambda = lambda, lam2 = lam2, pen = "scad")
nc.preds <- predict(nc.fit, newx = tail(x), s = nc.fit$lambda[3:5])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.