Description Usage Arguments Details Value Author(s) References Examples
Calculates the categories of MHWs or MCSs produced by detect_event
in
accordance with the naming scheme proposed in Hobday et al. (2018).
1 2 3 4 5 6 7 8 9 10 |
data |
The function receives the full (list) output from the
|
y |
The column containing the measurement variable. If the column
name differs from the default (i.e. |
S |
This argument informs the function if the data were collected in the
southern hemisphere (TRUE, default) or the northern hemisphere (FALSE) so that it may correctly
output the |
name |
If a character string (e.g. "Bohai Sea") is provided here it will be used
to name the events in the |
climatology |
The default setting of |
MCScorrect |
When calculating marine cold-spells (MCSs) it may occur in some areas that the bottom thresholds for the more intense categories will be below -1.8C, this is physically impossible on Earth, so if one wants to correct the bottom thresholds to not be able to exceed -1.8C, set this argument to TRUE (default is FALSE). |
season |
This argument allows the user to decide how the season(s) of occurrence for
the MHWs are labelled. The default setting of |
roundVal |
This argument allows the user to choose how many decimal places
the outputs will be rounded to. Default is 4. To
prevent rounding set |
An explanation for the categories is as follows:
I Moderate-Events that have been detected, but with a maximum intensity that does not double the distance between the seasonal climatology and the threshold value.
II Strong-Events with a maximum intensity that doubles the distance from the seasonal climatology and the threshold, but do not triple it.
III Severe-Events that triple the aforementioned distance, but do not quadruple it.
IV Extreme-Events with a maximum intensity that is four times or greater than the aforementioned distance. Scary stuff...
The function will return a tibble with results similar to those seen in
Table 2 of Hobday et al. (2018). This provides the information necessary to
appraise the extent of the events in the output of detect_event
based on the
category ranking scale. The category thresholds are calculated based on the difference
between the given seasonal climatology and threshold climatology. The four category levels
are then the difference multiplied by the category level.
The definitions for the default output columns are as follows:
event_no |
The number of the event as determined by |
event_name |
The name of the event. Generated from the |
peak_date |
The date (day) on which the maximum intensity of the event was recorded. |
category |
The maximum category threshold reached/exceeded by the event. |
i_max |
The maximum intensity of the event above the threshold value. |
duration |
The total duration (days) of the event. Note that this includes
any possible days when the measurement value |
p_moderate |
The proportion of the total duration (days) spent at or above the first threshold, but below any further thresholds. |
p_strong |
The proportion of the total duration (days) spent at or above the second threshold, but below any further thresholds. |
p_severe |
The proportion of the total duration (days) spent at or above the third threshold, but below the fourth threshold. |
p_extreme |
The proportion of the total duration (days) spent at or above the fourth and final threshold. |
season |
The season(s) during which the event occurred. If the event
occurred across two seasons this will be displayed as e.g. "Winter/Spring".
Across three seasons as e.g. "Winter-Summer". Events lasting across four or more
seasons are listed as "Year-round". December (June) is used here as the start of
Austral (Boreal) summer. If "start", "peak", or "end" was given to the |
If climatology = TRUE
, this function will output a list of two dataframes.
The first dataframe, climatology
, will contain the following columns:
t |
The column containing the daily date values. |
event_no |
The numeric event number label. |
intensity |
The daily exceedance (default is degrees C) above the seasonal climatology. |
category |
The category classification per day. |
The second dataframe, event
, contains the default output of this function,
as detailed above.
Robert W. Schlegel
Hobday et al. (2018). Categorizing and Naming Marine Heatwaves. Oceanography 31(2).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | res_WA <- detect_event(ts2clm(sst_WA,
climatologyPeriod = c("1983-01-01", "2012-12-31")))
# Note that the name argument expects a character vector
cat_WA <- category(res_WA, name = "WA")
tail(cat_WA)
# If the data were collected in the northern hemisphere
# we must let the function know this, as seen below
res_Med <- detect_event(ts2clm(sst_Med,
climatologyPeriod = c("1983-01-01", "2012-12-31")))
cat_Med <- category(res_Med, S = FALSE, name = "Med")
tail(cat_Med)
# One may also choose to have this function output the daily
# category classifications as well by setting: climatology = TRUE
cat_WA_daily <- category(res_WA, name = "WA", climatology = TRUE)
head(cat_WA_daily$climatology)
# Note that this will not return the complete time series, only the
# days during which events were detected.
# This was done to reduce the size of the output for those working
# with gridded data.
# Should one want a complete time series, the daily category results
# may simply be left_join() with the detect_event() results
cat_WA_ts <- dplyr::left_join(res_WA$climatology,
cat_WA_daily$climatology)
head(cat_WA_ts)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.