Nothing
#' @title Non-longitudinal pooled simulations.
#' @export
#' @family simulate
#' @description Simulate from the non-longitudinal pooled model.
#' @return A list with the following elements:
#' * `data`: tidy long-form dataset with the patient-level data.
#' one row per patient and indicator columns for the study,
#' group (e.g. treatment arm), and patient ID. The `response`
#' columns is the patient response. The other columns are
#' baseline covariates. The control group is the one with
#' the `group` column equal to 1, and the current study (non-historical)
#' is the one with the maximum value of the `study` column.
#' Only the current study has any non-control-group patients,
#' the historical studies have only the control group.
#' * `parameters`: named list of model parameter values.
#' See the model specification vignette for details.
#' * `matrices`: A named list of model matrices.
#' See the model specification vignette for details.
#' @param n_study Number of studies to simulate.
#' @param n_group Number of groups (e.g. study arms) to simulate per study.
#' @param n_patient Number of patients to simulate per study per group.
#' @param n_continuous Number of continuous covariates to simulate
#' (all from independent standard normal distributions).
#' @param n_binary Number of binary covariates to simulate
#' (all from independent Bernoulli distributions with p = 0.5).
#' @param s_alpha Numeric of length 1, prior standard deviation
#' of the study-specific control group mean parameters `alpha`.
#' @param s_delta Numeric of length 1, prior standard deviation
#' of the study-by-group effect parameters `delta`.
#' @param s_beta Numeric of length 1, prior standard deviation
#' of the fixed effects `beta`.
#' @param s_sigma Numeric of length 1, prior upper bound
#' of the residual standard deviations.
#' @param alpha Numeric vector of length 1 for the pooled
#' and mixture models and length `n_study` for the
#' independent and hierarchical models.
#' `alpha` is the vector of control group mean parameters.
#' `alpha` enters the model by multiplying with
#' `$matrices$x_alpha` (see the return value).
#' The control group in the data is the one with the
#' `group` column equal to 1.
#' @param delta Numeric vector of length `n_group - 1`
#' of treatment effect parameters.
#' `delta` enters the model by multiplying with
#' `$matrices$x_delta` (see the return value).
#' The control (non-treatment) group in the data is the one with the
#' `group` column equal to 1.
#' @param beta Numeric vector of `n_study * (n_continuous + n_binary)`
#' fixed effect parameters. Within each study,
#' the first `n_continuous` betas
#' are for the continuous covariates, and the rest are for
#' the binary covariates. All the `beta`s for one study
#' appear before all the `beta`s for the next study,
#' and studies are arranged in increasing order of
#' the sorted unique values in `$data$study` in the output.
#' `betas` enters the model by multiplying with
#' `$matrices$x_alpha` (see the return value).
#' @param sigma Numeric vector of `n_study` study-specific
#' residual standard deviations.
#' @examples
#' hb_sim_pool(n_continuous = 1)$data
hb_sim_pool <- function(
n_study = 5,
n_group = 3,
n_patient = 100,
n_continuous = 0,
n_binary = 0,
s_alpha = 1,
s_delta = 1,
s_beta = 1,
s_sigma = 1,
alpha = stats::rnorm(n = 1, mean = 0, sd = s_alpha),
delta = stats::rnorm(n = n_group - 1, mean = 0, sd = s_delta),
beta = stats::rnorm(
n = n_study * (n_continuous + n_binary),
mean = 0,
sd = s_delta
),
sigma = stats::runif(n = n_study, min = 0, max = s_sigma)
) {
true(n_study, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_group, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_patient, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_continuous, length(.) == 1, is.finite(.), is.numeric(.), . >= 0)
true(n_binary, length(.) == 1, is.finite(.), is.numeric(.), . >= 0)
true(n_study, length(.) == 1, is.finite(.), is.numeric(.), (. > 0))
true(s_alpha, length(.) == 1, is.finite(.), is.numeric(.), (. > 0))
true(s_delta, length(.) == 1, is.finite(.), is.numeric(.), (. > 0))
true(s_beta, length(.) == 1, is.finite(.), is.numeric(.), (. > 0))
true(s_sigma, length(.) == 1, is.finite(.), is.numeric(.), (. > 0))
true(alpha, length(.) == 1, is.finite(.))
true(delta, is.finite(.), is.numeric(.), length(.) == n_group - 1)
true(beta, all(is.finite(.)) || !length(.), is.numeric(.))
true(length(beta) == n_study * (n_continuous + n_binary))
true(sigma, is.finite(.), is.numeric(.), length(.) == n_study)
data <- hb_sim_grid(n_study, n_group, n_patient)
x_alpha <- get_x_alpha_pool_or_mixture(data)
x_delta <- get_x_delta(data)
covariates <- hb_sim_x_beta(
data = data,
x_alpha = x_alpha,
x_delta = x_delta,
n_continuous = n_continuous,
n_binary = n_binary
)
data <- dplyr::bind_cols(data, tibble::as_tibble(covariates))
x_beta <- get_x_beta(data = data, x_alpha = x_alpha, x_delta = x_delta)
data$response <- hb_sim_response(
data = data,
x_alpha = x_alpha,
x_delta = x_delta,
x_beta = x_beta,
alpha = alpha,
delta = delta,
beta = beta,
sigma = sigma
)
hb_warn_identifiable(
response = data$response,
x_alpha = x_alpha,
x_delta = x_delta,
x_beta = x_beta
)
parameters <- list(
alpha = alpha,
delta = delta,
beta = beta,
sigma = sigma
)
matrices <- list(
x_alpha = x_alpha,
x_delta = x_delta,
x_beta = x_beta
)
list(
data = data,
parameters = parameters,
matrices = matrices
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.