Nothing
## ----include = FALSE----------------------------------------------------------
library(historicalborrow)
library(dplyr)
library(posterior)
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
fig.width = 7,
fig.height = 5
)
set.seed(0)
## ----paged.print = FALSE------------------------------------------------------
library(historicalborrow)
library(dplyr)
set.seed(0)
data <- hb_sim_independent(
n_continuous = 1,
n_study = 3,
n_group = 2,
alpha = rep(1, 3),
delta = 0.5,
sigma = rep(1, 3),
n_patient = 100
)$data %>%
rename(
outcome = response,
trial = study,
arm = group,
subject = patient,
factor1 = covariate_study1_continuous1,
factor2 = covariate_study2_continuous1
) %>%
mutate(
trial = paste0("trial", trial),
arm = paste0("arm", arm),
subject = paste0("subject", subject)
)
data
## -----------------------------------------------------------------------------
library(dplyr)
standardized_data <- hb_data(
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
covariates = c("factor1", "factor2")
)
standardized_data
## -----------------------------------------------------------------------------
distinct(
standardized_data,
study,
study_label,
group,
group_label
) %>%
select(
study,
study_label,
group,
group_label
)
## -----------------------------------------------------------------------------
mcmc_pool <- hb_mcmc_pool(
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
# Can be continuous, categorical, or binary columns:
covariates = c("factor1", "factor2"),
# Raise these arguments for serious analyses:
n_chains = 4,
n_adapt = 2e3,
n_warmup = 2e3,
n_iterations = 4e3
)
mcmc_pool
## -----------------------------------------------------------------------------
mcmc_independent <- hb_mcmc_independent(
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
# Can be continuous, categorical, or binary columns:
covariates = c("factor1", "factor2"),
# Raise these arguments for serious analyses:
n_chains = 4,
n_adapt = 2e3,
n_warmup = 2e3,
n_iterations = 4e3
)
## -----------------------------------------------------------------------------
mcmc_hierarchical <- hb_mcmc_hierarchical(
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
# Can be continuous, categorical, or binary columns:
covariates = c("factor1", "factor2"),
# Raise these arguments for serious analyses:
n_chains = 4,
n_adapt = 2e3,
n_warmup = 2e3,
n_iterations = 4e3
)
## -----------------------------------------------------------------------------
hyperparameters <- hb_mcmc_mixture_hyperparameters(
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject"
)
hyperparameters
## -----------------------------------------------------------------------------
data_mixture <- dplyr::filter(data, trial == "trial3")
mcmc_mixture <- hb_mcmc_mixture(
data = data_mixture, # only analyze current study
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
# Can be continuous, categorical, or binary columns:
covariates = c("factor1", "factor2"),
# Prior mixture components:
m_omega = hyperparameters$m_omega,
s_omega = hyperparameters$s_omega,
p_omega = rep(1 / nrow(hyperparameters), nrow(hyperparameters)),
# Raise these arguments for serious analyses:
n_chains = 4,
n_adapt = 2e3,
n_warmup = 2e3,
n_iterations = 4e3
)
## -----------------------------------------------------------------------------
hb_convergence(mcmc_hierarchical)
## -----------------------------------------------------------------------------
summary_hierarchical <- hb_summary(
mcmc = mcmc_hierarchical,
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
covariates = c("factor1", "factor2"),
eoi = c(0, 1),
direction = c(">", "<")
)
summary_hierarchical
## -----------------------------------------------------------------------------
hb_ess(
mcmc_pool = mcmc_pool,
mcmc_hierarchical = mcmc_hierarchical,
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject"
)
## -----------------------------------------------------------------------------
summary_pool <- hb_summary(
mcmc = mcmc_pool,
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
covariates = c("factor1", "factor2")
)
summary_independent <- hb_summary(
mcmc = mcmc_independent,
data = data,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
covariates = c("factor1", "factor2")
)
hb_metrics(
borrow = summary_hierarchical,
pool = summary_pool,
independent = summary_independent
)
## -----------------------------------------------------------------------------
summary_mixture <- hb_summary(
mcmc = mcmc_mixture,
data = data_mixture,
response = "outcome",
study = "trial",
study_reference = "trial3",
group = "arm",
group_reference = "arm1",
patient = "subject",
covariates = c("factor1", "factor2")
)
hb_metrics(
borrow = summary_mixture,
pool = summary_pool,
independent = summary_independent
)
## ----borrow1------------------------------------------------------------------
hb_plot_borrow(
borrow = summary_hierarchical,
pool = summary_pool,
independent = summary_independent
)
## ----borrow2------------------------------------------------------------------
hb_plot_borrow(
borrow = summary_mixture,
pool = summary_pool,
independent = summary_independent
)
## ----group--------------------------------------------------------------------
hb_plot_group(
borrow = summary_mixture,
pool = summary_pool,
independent = summary_independent
)
## ----tau----------------------------------------------------------------------
hb_plot_tau(mcmc_hierarchical)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.