Nothing
set.seed(0)
data <- hbl_sim_hierarchical(
n_study = 2,
n_group = 3,
n_patient = 5,
n_rep = 4,
n_continuous = 0,
n_binary = 0,
s_mu = 1,
s_tau = 1,
s_delta = 1,
s_beta = 1,
s_sigma = 1,
constraint = FALSE
)$data
# Watch qstat to see 3 jobs with 4 slots each.
# Check the logs to see parallel chains.
all <- hbl_mcmc_sge(
data,
chains = 4,
warmup = 100,
iter = 200,
seed = 0,
constraint = FALSE,
covariance_current = "diagonal",
covariance_historical = "unstructured",
log = "log/"
)
# hierarchical
out <- all$hierarchical
expect_equal(attr(out, "model"), "hierarchical")
lapply(out, function(x) true(is.numeric(x) && all(is.finite(x))))
sigma_grid <- tidyr::expand_grid(
study = seq_len(2),
rep = seq_len(4)
)
lambda_historical_grid <- tidyr::expand_grid(
study = seq_len(1),
rep1 = seq_len(4),
rep2 = seq_len(4)
)
lambda_historical_grid <- dplyr::filter(
lambda_historical_grid,
rep1 >= rep2,
rep1 + rep2 > 2
)
exp <- c(
".chain",
".draw",
".iteration",
"lp__",
sprintf("alpha[%s]", seq_len(8)),
sprintf("delta[%s]", seq_len(8)),
sprintf(
"sigma[%s,%s]",
sigma_grid$study,
sigma_grid$rep
),
sprintf(
"lambda_historical[%s,%s,%s]",
lambda_historical_grid$study,
lambda_historical_grid$rep1,
lambda_historical_grid$rep2
),
sprintf("mu[%s]", seq_len(4)),
sprintf("tau[%s]", seq_len(4))
)
expect_equal(sort(colnames(out)), sort(exp))
# independent
out <- all$independent
expect_equal(attr(out, "model"), "independent")
lapply(out, function(x) true(is.numeric(x) && all(is.finite(x))))
sigma_grid <- tidyr::expand_grid(
study = seq_len(2),
rep = seq_len(4)
)
lambda_historical_grid <- tidyr::expand_grid(
study = seq_len(1),
rep1 = seq_len(4),
rep2 = seq_len(4)
)
lambda_historical_grid <- dplyr::filter(
lambda_historical_grid,
rep1 >= rep2,
rep1 + rep2 > 2
)
exp <- c(
".chain",
".draw",
".iteration",
"lp__",
sprintf("alpha[%s]", seq_len(8)),
sprintf("delta[%s]", seq_len(8)),
sprintf(
"sigma[%s,%s]",
sigma_grid$study,
sigma_grid$rep
),
sprintf(
"lambda_historical[%s,%s,%s]",
lambda_historical_grid$study,
lambda_historical_grid$rep1,
lambda_historical_grid$rep2
)
)
expect_equal(sort(colnames(out)), sort(exp))
# pool
out <- all$pool
expect_equal(attr(out, "model"), "pool")
lapply(out, function(x) true(is.numeric(x) && all(is.finite(x))))
sigma_grid <- tidyr::expand_grid(
study = seq_len(2),
rep = seq_len(4)
)
lambda_historical_grid <- tidyr::expand_grid(
study = seq_len(1),
rep1 = seq_len(4),
rep2 = seq_len(4)
)
lambda_historical_grid <- dplyr::filter(
lambda_historical_grid,
rep1 >= rep2,
rep1 + rep2 > 2
)
exp <- c(
".chain",
".draw",
".iteration",
"lp__",
sprintf("alpha[%s]", seq_len(4)),
sprintf("delta[%s]", seq_len(8)),
sprintf(
"sigma[%s,%s]",
sigma_grid$study,
sigma_grid$rep
),
sprintf(
"lambda_historical[%s,%s,%s]",
lambda_historical_grid$study,
lambda_historical_grid$rep1,
lambda_historical_grid$rep2
)
)
expect_equal(sort(colnames(out)), sort(exp))
unlink("logs", recursive = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.