Description Usage Arguments See Also Examples
The createHmma
method creates a HMM-A from the specifications
provided. The amount of states are implicitly derived from the initial
distribution. Bayesian networks can be created using the bnlearn
package.
1 | createHmma(init, trans, bns)
|
init |
This initial distribution as a vector. |
trans |
The transition distribution as a matrix. |
bns |
The Bayesian networks for the states. |
bnlearn
for more information regarding the creation of
Bayesian networks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Start by creating the initial and transition distribution
init <- c(0.3, 0.7)
trans <- c(0.4, 0.7, 0.6, 0.3)
dim(trans) <- c(2,2)
# Create a Baysian network for each state using 'bnlearn'
library(bnlearn)
struc <- model2network("[X1][X2]")
cptX1 <- matrix(c(0.15, 0.85), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
cptX2 <- matrix(c(0.7, 0.3), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
bn1 <- custom.fit(struc, dist = list(X1 = cptX1,
X2 = cptX2))
struc <- model2network("[X2|X1][X1]")
cptX1 <- matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
cptX2 <- matrix(c(0.9, 0.1, 0.5, 0.5), nrow = 2, ncol = 2)
dimnames(cptX2) <- list("X2" = c("TRUE", "FALSE"),
"X1" = c("TRUE", "FALSE"))
bn2 <- custom.fit(struc, dist = list(X1 = cptX1,
X2 = cptX2))
bns <- list()
bns[[1]] <- bn1
bns[[2]] <- bn2
# Create the model
hmma <- createHmma(init = init, trans = trans, bns = bns)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.