Nothing
# compute individual node contributions to the network score.
per.node.score = function(network, data, score, targets, extra.args,
debug = FALSE) {
.Call("per_node_score",
network = network,
data = data,
score = score,
targets = targets,
extra.args = extra.args,
debug = debug)
}#PER.NODE.SCORE
# complete a prior over arcs as per Castelo and Siebes.
cs.completed.prior = function(beta, nodes, learning = FALSE) {
beta = .Call("castelo_completion",
prior = beta,
nodes = nodes,
learning = learning)
class(beta) = c("prior", "prior.cs", "data.frame")
attr(beta, "nodes") = nodes
return(beta)
}#CS.COMPLETED.PRIOR
# compute the optimal imaginary sample size for a discrete network.
alpha.star.backend = function(x, data, debug = FALSE) {
.Call("alpha_star",
x = x,
data = data,
debug = debug)
}#ALPHA.STAR.BACKEND
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.