| nri_best_performance | R Documentation | 
Get or mark best performing model(s) between narrow band indices and environmental variables
nri_best_performance(nri, n = 1, coefficient = "p.value", 
                     predictor = 2, abs = FALSE, findMax = FALSE, 
                     ...)
mark_nri_best_performance(best, glmnri, n = nrow(best$Indices), 
                          uppertriang = FALSE, ...)
nri | 
 Object of class nri  | 
glmnri | 
 Object of class glmnri  | 
n | 
 Number of models to return or mark  | 
coefficient | 
 Name or index of coefficient to plot  | 
predictor | 
 Name or index of term to plot  | 
abs | 
 Use absolute value (e.g. for t-values)  | 
findMax | 
 Find maximum or minimum values  | 
best | 
 Output from   | 
uppertriang | 
 Flag to mark the upper triangle  | 
... | 
 Further arguments passed to   | 
See details in glm.nri and glm.
Lukas Lehnert
glm.nri, glm
data(spectral_data)
## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
                              response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)
## Build glm-models
glmnri <- glm.nri(nri_WV ~ chlorophyll, preddata = spec_WV)
## Return best 5 models
BM <- nri_best_performance(glmnri, n = 5, coefficient = "p.value")
## Get nri values for the 5 models
nri_BM <- getNRI(nri_WV, BM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.