plot.Nri | R Documentation |
Plot values in (generalised) linear modes and correlation tests from narrow band indices
## S4 method for signature 'Nri' plot(x, coefficient = "p.value", predictor = 2, xlab = "Wavelength band 1 (nm)", ylab = "Wavelength band 2 (nm)", legend = TRUE, colspace = "hcl", col = c(10, 90, 60, 60, 10, 80), digits = 2, range = "auto", constraint = NULL, uppertriang = FALSE, zlog = FALSE, ...)
x |
Object to be plotted. |
coefficient |
Name or index of coefficient to plot. |
predictor |
Name or index of term to plot. |
xlab |
Label for x-axis. |
ylab |
Label for y-axis. |
legend |
Flag if legend is plotted. If |
colspace |
Either "hcl" or "rgb". Colour space to be used for the plots. |
col |
If colspace == "hcl", the vector is giving the minimum and maximum values of hue (element 1 & 2), chroma (element 3 & 4) and luminance (element 5 & 6). The optional element 7 is used as alpha value. See |
digits |
Precision of labels in legend. |
range |
"auto" or a vector of length = 2 giving the range of values to be plotted. |
constraint |
A character string giving a constraint which values should be plotted. See examples section. |
uppertriang |
Flag if upper triangle is used for the plot. Note that if |
zlog |
Flag indicating if color should be logarithmically scaled. Useful e.g. for p-values. |
... |
Further arguments passed to |
See details in glm.nri
and glm
.
An invisible vector with minimum and maximum values plotted.
Lukas Lehnert
nri
, glm.nri
, glm
, cor.test
, t.test
## Not run: data(spectral_data) ## Calculate all possible combinations for WorldView-2-8 spec_WV <- spectralResampling(spectral_data, "WorldView2-8", response_function = FALSE) nri_WV <- nri(spec_WV, recursive = TRUE) ## Fit generalised linear models between NRI-values and chlorophyll glmnri <- glm.nri(nri_WV ~ chlorophyll, preddata = spec_WV) ## Plot p-values plot(glmnri, range = c(0, 0.05)) ## Plot t-values plot(glmnri, coefficient = "t.value") ## Plot only t-values where p-values < 0.001 plot(glmnri, coefficient = "t.value", constraint = "p.value < 0.001") ## Fit linear models between NRI-values and chlorophyll lmnri <- lm.nri(nri_WV ~ chlorophyll, preddata = spec_WV) ## Plot r.squared plot(lmnri) ## Example for EnMAP (Attention: Calculation time may be long!) spec_EM <- spectralResampling(spectral_data, "EnMAP", response_function = FALSE) mask(spec_EM) <- c(300, 550, 800, 2500) nri_EM <- nri(spec_EM, recursive = TRUE) glmnri <- glm.nri(nri_EM ~ chlorophyll, preddata = spec_EM) ## Plot T values in lower and p-values in upper diagonal ## of the plot ## Enlarge margins for legends par(mar = c(5.1, 4.1, 4.1, 5)) plot(glmnri, coefficient = "t.value", legend = "outer") plot(glmnri, coefficient = "p.value", uppertriang = TRUE, zlog = TRUE) lines(c(400,1705),c(400,1705)) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.