Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 6,
fig.asp = 0.618,
out.width = "70%",
fig.align = "center"
)
load(system.file("vignettes/example_niveaux_nappes_api.RData", package = "hubeau"))
## -----------------------------------------------------------------------------
my_water_table_code <- "GG063"
## ----setup--------------------------------------------------------------------
library(hubeau)
library(dplyr)
library(sf)
library(mapview)
library(ggplot2)
library(purrr)
## -----------------------------------------------------------------------------
list_endpoints(api = "niveaux_nappes")
## -----------------------------------------------------------------------------
list_params(api = "niveaux_nappes",
endpoint = "stations")
## ----eval = FALSE-------------------------------------------------------------
# stations <- get_niveaux_nappes_stations(
# codes_masse_eau_edl = my_water_table_code
# )
## -----------------------------------------------------------------------------
param_chroniques <- paste(
list_params(api = "niveaux_nappes",
endpoint = "chroniques"),
collapse = ","
)
## ----eval = FALSE-------------------------------------------------------------
# water_table_level <- map_df(
# .x = stations$code_bss,
# .f = function(x)
# get_niveaux_nappes_chroniques(code_bss = x,
# date_debut_mesure = "2015-01-01")
# )
## ----eval = FALSE-------------------------------------------------------------
# water_table_level <- water_table_level %>%
# mutate(date_mesure = lubridate::ymd(date_mesure),
# year = lubridate::year(date_mesure),
# month = lubridate::month(date_mesure))
## ----eval = FALSE-------------------------------------------------------------
# yearly_mean_water_table_level <- water_table_level %>%
# group_by(code_bss,
# year) %>%
# summarise(n_months = n_distinct(month)) %>%
# filter(n_months == 12) # complete years
#
# yearly_mean_water_table_level <- yearly_mean_water_table_level %>%
# select(-n_months) %>%
# left_join(water_table_level) %>% # filtering join
# group_by(code_bss,
# year,
# month) %>%
# summarise(monthly_mean_water_table_level = mean(niveau_nappe_eau, na.rm = TRUE)) %>%
# group_by(code_bss,
# year) %>%
# summarise(yearly_mean_water_table_level = mean(monthly_mean_water_table_level, na.rm = TRUE)) %>%
# ungroup()
## ----fig.width = 8, fig.height = 8--------------------------------------------
ggplot(data = yearly_mean_water_table_level,
aes(x = year,
y = yearly_mean_water_table_level)) +
geom_line() +
facet_wrap(~code_bss,
scales = "free_y")
## -----------------------------------------------------------------------------
stations_geo <- stations %>%
st_as_sf(coords = c("x", "y"),
crs = 4626)
## -----------------------------------------------------------------------------
p <- lapply(unique(yearly_mean_water_table_level$code_bss),
function(x) {
ggplot(data = yearly_mean_water_table_level %>% filter(code_bss == x),
aes(x = year,
y = yearly_mean_water_table_level)) +
geom_line() +
labs(title = x)
})
## ----out.width = "100%", fig.asp = 1------------------------------------------
mapview(
stations_geo,
map.types = c("OpenStreetMap",
"Esri.WorldShadedRelief",
"OpenTopoMap"),
popup = leafpop::popupGraph(p)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.