Nothing
#' `iAR` Class
#'
#' Represents a univariate irregular autoregressive (iAR) time series model.
#' This class extends the "unidata" class and includes additional properties
#' for modeling, forecasting, and interpolation.
#'
#' @param times A numeric vector representing the time points.
#' @param series A numeric vector representing the values of the time series.
#' @param series_esd A numeric vector representing the error standard deviations of the time series.
#' @param family A character string indicating the distribution family of the model (default: "norm").
#' @param fitted_values A numeric vector containing the fitted values from the model.
#' @param loglik A numeric value representing the log-likelihood of the model.
#' @param kalmanlik A numeric value representing the Kalman likelihood of the model.
#' @param coef A numeric vector containing the estimated coefficients of the model.
#' @param df A numeric value representing the degrees of freedom (`t` distribution).
#' @param sigma A numeric value representing the scale parameter (`t` distribution).
#' @param mean A numeric value representing the estimated mean of the model (`gamma` parameter).
#' @param variance A numeric value representing the estimated variance of the model (`gamma` parameter).
#' @param tAhead A numeric value specifying the forecast horizon (default: 1).
#' @param forecast A numeric vector containing the forecasted values.
#' @param interpolated_values A numeric vector containing the interpolated values.
#' @param interpolated_times A numeric vector containing the times of the interpolated data points.
#' @param interpolated_series A numeric vector containing the interpolated series.
#' @param zero_mean A logical value indicating if the model assumes a zero-mean process (default: TRUE).
#' @param standardized A logical value indicating if the model assumes a standardized process (default: TRUE).
#' @param hessian A logical value indicating whether the Hessian matrix is computed during estimation (default: FALSE).
#' @param summary A list containing the summary of the model fit, including diagnostics and statistical results.
#'
#' @details
#' The `iAR` class is designed to handle irregularly observed time series data using an
#' autoregressive approach. It extends the "unidata" class to include additional
#' modeling and diagnostic capabilities. Key functionalities include forecasting,
#' interpolation, and model fitting.
#'
#' The class also supports advanced modeling features, such as:
#' - Different distribution families for the data (e.g., Gaussian, `t`-distribution).
#' - Optional computation of the Hessian matrix for parameter estimation.
#' - Standardized or zero-mean process assumptions.
#'
#' @references
#' \insertRef{Eyheramendy_2018}{iAR}
#'
#' @examples
#' # Create an `iAR` object
#' o=iAR::utilities()
#' o<-gentime(o, n=200, distribution = "expmixture", lambda1 = 130, lambda2 = 6.5,p1 = 0.15, p2 = 0.85)
#' times=o@times
#' my_iAR <- iAR(family = "norm", times = times, coef = 0.9,hessian=TRUE)
#'
#' my_iAR@family
#' my_iAR@coef
#'
#' @export
iAR <- S7::new_class(
"iAR",
parent = unidata,
package = "iAR",
properties = list(family = S7::new_property(S7::class_character,
default = "norm"),
fitted_values = S7::class_numeric,
loglik = S7::class_numeric,
kalmanlik = S7::class_numeric,
coef = S7::class_numeric,
df = S7::class_numeric, # t
sigma = S7::class_numeric, # t
mean = S7::class_numeric, # gamma
variance = S7::class_numeric, #gamma
tAhead = S7::new_property(class_numeric, default = 1),
forecast = S7::class_numeric,
interpolated_values = S7::class_numeric,
interpolated_times = S7::class_numeric,
interpolated_series = S7::class_numeric,
zero_mean = S7::new_property(class_logical, default = TRUE), # no gamma
standardized = S7::new_property(class_logical, default = TRUE), # no gamma # no t
hessian = S7::new_property(class_logical, default = FALSE),
summary = S7::class_list)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.