alpha_centrality | R Documentation |
alpha_centrality()
calculates the alpha centrality of some (or all)
vertices in a graph.
alpha_centrality(
graph,
nodes = V(graph),
alpha = 1,
loops = FALSE,
exo = 1,
weights = NULL,
tol = 1e-07,
sparse = TRUE
)
graph |
The input graph, can be directed or undirected. In undirected graphs, edges are treated as if they were reciprocal directed ones. |
nodes |
Vertex sequence, the vertices for which the alpha centrality values are returned. (For technical reasons they will be calculated for all vertices, anyway.) |
alpha |
Parameter specifying the relative importance of endogenous versus exogenous factors in the determination of centrality. See details below. |
loops |
Whether to eliminate loop edges from the graph before the calculation. |
exo |
The exogenous factors, in most cases this is either a constant – the same factor for every node, or a vector giving the factor for every vertex. Note that too long vectors will be truncated and too short vectors will be replicated to match the number of vertices. |
weights |
A character scalar that gives the name of the edge attribute
to use in the adjacency matrix. If it is |
tol |
Tolerance for near-singularities during matrix inversion, see
|
sparse |
Logical scalar, whether to use sparse matrices for the calculation. The ‘Matrix’ package is required for sparse matrix support |
The alpha centrality measure can be considered as a generalization of eigenvector centrality to directed graphs. It was proposed by Bonacich in 2001 (see reference below).
The alpha centrality of the vertices in a graph is defined as the solution of the following matrix equation:
x=\alpha A^T x+e,
where A
is the (not necessarily symmetric) adjacency matrix of the
graph, e
is the vector of exogenous sources of status of the
vertices and \alpha
is the relative importance of the
endogenous versus exogenous factors.
A numeric vector contaning the centrality scores for the selected vertices.
Singular adjacency matrices cause problems for this algorithm, the routine may fail is certain cases.
Gabor Csardi csardi.gabor@gmail.com
Bonacich, P. and Lloyd, P. (2001). “Eigenvector-like measures of centrality for asymmetric relations” Social Networks, 23, 191-201.
eigen_centrality()
and power_centrality()
Centrality measures
authority_score()
,
betweenness()
,
closeness()
,
diversity()
,
eigen_centrality()
,
harmonic_centrality()
,
hits_scores()
,
page_rank()
,
power_centrality()
,
spectrum()
,
strength()
,
subgraph_centrality()
# The examples from Bonacich's paper
g.1 <- make_graph(c(1, 3, 2, 3, 3, 4, 4, 5))
g.2 <- make_graph(c(2, 1, 3, 1, 4, 1, 5, 1))
g.3 <- make_graph(c(1, 2, 2, 3, 3, 4, 4, 1, 5, 1))
alpha_centrality(g.1)
alpha_centrality(g.2)
alpha_centrality(g.3, alpha = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.