# knitr::knit_hooks$set(optipng = knitr::hook_optipng) # knitr::opts_chunk$set(optipng = '-o7') knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(fig.align = "center") knitr::opts_chunk$set(fig.width = 18) knitr::opts_chunk$set(fig.height = 12) library(immunarch) data(scdata)
This is a vignette dedicated to provide an overview on how to work with single-cell paired chain data in
immunarchSingle-cell support is currently in the development version. In order to access it, you need to install the latest development version of the package by executing the following command:
install.packages("devtools"); devtools::install_github("immunomind/immunarch", ref="dev")
To read paired chain data with
immunarchuse therepLoadfunction with.mode = "paired". Currently we support 10X Genomics only.To create subset immune repertoires with specific barcodes use the
select_barcodesfunction. Output ofSeurat::Idents()as a barcode vector works.To create cluster-specific and patient-specific datasets using barcodes from the output of
Seurat::Idents()use theselect_clustersfunction.
immunarchLoad the package into the R enviroment:
library(immunarch)
For testing purposes we attached a new paired chain dataset to immunarch. Load it by executing the following command:
data(scdata)
To load your own datasets, use the repLoad function. Currently we implemented paired chain data support for 10X Genomics data only. A working example of loading datasets into R:
file_path <- paste0(system.file(package = "immunarch"), "/extdata/sc/flu.csv.gz") igdata <- repLoad(file_path, .mode = "paired") igdata$meta head(igdata$data[[1]][c(1:7, 16, 17)])
To subset the data by barcodes, use the select_barcodes function.
barcodes <- c("AGTAGTCAGTGTACTC-1", "GGCGACTGTACCGAGA-1", "TTGAACGGTCACCTAA-1") new_df <- select_barcodes(scdata$data[[1]], barcodes) new_df
To create a new dataset with cluster-specific immune repertoires, use the select_clusters function:
scdata_pat <- select_clusters(scdata, scdata$bc_patient, "Patient") names(scdata_pat$data) scdata_pat$meta
To create a new dataset with cluster-specific immune repertoires, use the select_clusters function. You can apply this function after you created patient-specific datasets to get patient-specific cell cluster-specific immune repertoires, e.g., a Memory B Cell repertoire for a specific patient:
scdata_cl <- select_clusters(scdata_pat, scdata$bc_cluster, "Cluster") names(scdata_cl$data) scdata_cl$meta
Most functions will work out-of-the-box with paired chain data.
p1 <- repOverlap(scdata_cl$data) %>% vis() p2 <- repDiversity(scdata_cl$data) %>% vis() target <- c("CARAGYLRGFDYW;CQQYGSSPLTF", "CARATSFYYFHHW;CTSYTTRTTLIF", "CARDLSRGDYFPYFSYHMNVW;CQSDDTANHVIF", "CARGFDTNAFDIW;CTAWDDSLSGVVF", "CTREDYW;CMQTIQLRTF") p3 <- trackClonotypes(scdata_cl$data, target, .col = "aa") %>% vis() (p1 + p2) / p3
Several functions may work incorrectly with paired chain data in this release of immunarch. Let us know via GitHub Issues!
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.