Nothing
test_that("forging predictors - formula", {
co2_ptype <-
structure(
list(
`(Intercept)` = numeric(0),
TypeMississippi = numeric(0),
conc = numeric(0)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
predictors <- important:::forge_predictors(CO2_ex, reg_f_fit)
expect_equal(predictors[0, ], co2_ptype)
expect_equal(nrow(predictors), nrow(CO2_ex))
###
co2_1d_ptype <-
structure(
list(`(Intercept)` = numeric(0), conc = numeric(0)),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
predictors <- important:::forge_predictors(CO2_ex, reg_1d_fit)
expect_equal(predictors[0, ], co2_1d_ptype)
expect_equal(nrow(predictors), nrow(CO2_ex))
})
test_that("forging predictors - recipe", {
co2_ptype <-
structure(
list(
conc = numeric(0),
Type_Mississippi = numeric(0)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
predictors <- important:::forge_predictors(CO2_ex, reg_r_fit)
expect_equal(predictors[0, ], co2_ptype)
expect_equal(nrow(predictors), nrow(CO2_ex))
})
test_that("forging predictors - selectors", {
co2_ptype <-
structure(
list(
Type = structure(
integer(0),
levels = c("Quebec", "Mississippi"),
class = c("factor")
),
conc = numeric(0)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
predictors <- important:::forge_predictors(CO2_ex, reg_v_fit)
expect_equal(predictors[0, ], co2_ptype)
expect_equal(nrow(predictors), nrow(CO2_ex))
})
# ------------------------------------------------------------------------------
test_that("extracting derived data - formula", {
skip_if_not_installed("modeldata")
ad_ptype <-
tibble::tibble(
`(Intercept)` = numeric(0),
tau = numeric(0),
p_tau = numeric(0),
VEGF = numeric(0),
MMP10 = numeric(0),
GenotypeE2E3 = numeric(0),
GenotypeE2E4 = numeric(0),
GenotypeE3E3 = numeric(0),
GenotypeE3E4 = numeric(0),
GenotypeE4E4 = numeric(0),
male = numeric(0),
Class = structure(
integer(0),
levels = c("Impaired", "Control"),
class = "factor"
)
)
dat <- important:::extract_data_derived(cls_f_fit, data = ad_data_small)
expect_equal(dat[0, ], ad_ptype)
expect_equal(nrow(dat), nrow(ad_data_small))
###
dat <- important:::extract_data_derived(
cls_f_fit,
data = ad_data_small,
type = "predictors"
)
expect_equal(dat[0, ], ad_ptype |> dplyr::select(-Class))
expect_equal(nrow(dat), nrow(ad_data_small))
###
dat <- important:::extract_data_derived(
cls_f_fit,
data = ad_data_small,
type = "outcomes"
)
expect_equal(dat[0, ], ad_ptype |> dplyr::select(Class))
expect_equal(nrow(dat), nrow(ad_data_small))
###
expect_snapshot(
important:::extract_data_derived(
cls_f_fit,
data = ad_data_small,
type = "geno"
),
error = TRUE
)
expect_snapshot(
important:::extract_data_derived(cls_f_fit, data = ad_data_small[, 1]),
error = TRUE
)
})
test_that("extracting derived data - recipe", {
skip_if_not_installed("modeldata")
ad_ptype <-
tibble::tibble(
male = numeric(0),
PC1 = numeric(0),
PC2 = numeric(0),
Genotype_E2E3 = numeric(0),
Genotype_E2E4 = numeric(0),
Genotype_E3E3 = numeric(0),
Genotype_E3E4 = numeric(0),
Genotype_E4E4 = numeric(0),
Class = structure(
integer(0),
levels = c("Impaired", "Control"),
class = "factor"
)
)
dat <- important:::extract_data_derived(cls_r_fit, data = ad_data_small)
expect_equal(dat[0, ], ad_ptype)
expect_equal(nrow(dat), nrow(ad_data_small))
###
dat <- important:::extract_data_derived(
cls_r_fit,
data = ad_data_small,
type = "predictors"
)
expect_equal(dat[0, ], ad_ptype |> dplyr::select(-Class))
expect_equal(nrow(dat), nrow(ad_data_small))
###
dat <- important:::extract_data_derived(
cls_r_fit,
data = ad_data_small,
type = "outcomes"
)
expect_equal(dat[0, ], ad_ptype |> dplyr::select(Class))
expect_equal(nrow(dat), nrow(ad_data_small))
})
test_that("extracting derived data - selectors", {
skip_if_not_installed("modeldata")
ad_ptype <-
tibble::tibble(
tau = numeric(0),
p_tau = numeric(0),
VEGF = numeric(0),
MMP10 = numeric(0),
Genotype = structure(
integer(0),
levels = c("E2E2", "E2E3", "E2E4", "E3E3", "E3E4", "E4E4"),
class = "factor"
),
male = numeric(0),
Class = structure(
integer(0),
levels = c("Impaired", "Control"),
class = "factor"
)
)
dat <- important:::extract_data_derived(cls_v_fit, data = ad_data_small)
expect_equal(dat[0, ], ad_ptype)
expect_equal(nrow(dat), nrow(ad_data_small))
###
dat <- important:::extract_data_derived(
cls_v_fit,
data = ad_data_small,
type = "predictors"
)
expect_equal(dat[0, ], ad_ptype |> dplyr::select(-Class))
expect_equal(nrow(dat), nrow(ad_data_small))
###
dat <- important:::extract_data_derived(
cls_v_fit,
data = ad_data_small,
type = "outcomes"
)
expect_equal(dat[0, ], ad_ptype |> dplyr::select(Class))
expect_equal(nrow(dat), nrow(ad_data_small))
})
# ------------------------------------------------------------------------------
test_that("extracting original data - formula", {
skip_if_not_installed("modeldata")
dat <- important:::extract_data_original(cls_f_fit, data = ad_data_small)
expect_equal(
dat,
ad_data_small |>
dplyr::select(tau, p_tau, VEGF, MMP10, Genotype, male, Class)
)
### TODO this is an issue
reg_trans_fit <-
workflow(sqrt(uptake) ~ ., linear_reg()) |>
fit(data = CO2_ex)
dat <- important:::extract_data_original(reg_trans_fit, data = CO2_ex)
# names are c("Plant", "Type", "Treatment", "conc", "uptake")
# should we get uptake or sqrt(uptake)?
###
expect_snapshot(
important:::extract_data_original(cls_f_fit, data = ad_data_small[, 1]),
error = TRUE
)
})
test_that("extracting original data - recipe", {
skip_if_not_installed("modeldata")
dat <- important:::extract_data_original(cls_r_fit, data = ad_data_small)
expect_equal(
dat,
ad_data_small |>
dplyr::select(tau, p_tau, VEGF, MMP10, Genotype, male, Class)
)
})
test_that("extracting original data - selectors", {
skip_if_not_installed("modeldata")
dat <- important:::extract_data_original(cls_v_fit, data = ad_data_small)
expect_equal(
dat,
ad_data_small |>
dplyr::select(tau, p_tau, VEGF, MMP10, Genotype, male, Class)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.