Nothing
context("Intkrige predictions")
library(intkrige)
test_that("prediction for sample case is as expected (c++ version)", {
# First, define the location and elevation of interest.
# (In this case we pick coordinates of Utah State University)
templocs <- data.frame(lat = 41.745, long = -111.810, ELEVATION = 1456)
sp::coordinates(templocs) <- c("long", "lat")
sp::proj4string(templocs) <- "+proj=longlat +ellps=WGS84
+datum=WGS84 +no_defs +towgs84=0,0,0"
# Load the Utah Snow Load Data
data(utsnow)
utsnow.sp <- utsnow
# Convert to an 'intsp' object that inherits a SpatialPointsDataFrame
sp::coordinates(utsnow.sp) <- c("LONGITUDE", "LATITUDE")
sp::proj4string(utsnow.sp) <- sp::proj4string(templocs)
interval(utsnow.sp) <- c("minDL", "maxDL")
# analyze interval on log scale
interval(utsnow.sp) <- log(interval(utsnow.sp))
# Define the formulas we will use to define the intervals.
temp_formulas <- list(center ~ ELEVATION,
radius*(ELEVATION/median(ELEVATION)) ~ 1)
# Define, fit and check the variogram fits.
varios <- intvariogram(utsnow.sp,
formulas = temp_formulas)
varioFit <- fit.intvariogram(varios, models = gstat::vgm(c("Sph", "Sph", "Gau")))
preds <- intkrige::intkrige(locations = utsnow.sp,
newdata = templocs,
models = varioFit,
formulas = temp_formulas)
preds2 <- intkrige::intkrige(locations = utsnow.sp,
newdata = templocs,
models = varioFit,
formulas = temp_formulas, useR = FALSE)
target <- data.frame(lower = -0.0361, upper = 0.9703)
# The final results are predicted intervals after removing the effect of elevation.
expect_equal(round(interval(preds), 4), as.matrix(target))
expect_equal(round(interval(preds2), 4), as.matrix(target))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.