View source: R/genericfunctions.R
plot.invacost.costsummary | R Documentation |
This function provides different plotting methods for the raw average annual cost of invasive species over different periods of time
## S3 method for class 'invacost.costsummary'
plot(
x,
plot.breaks = 10^(-15:15),
plot.type = "points",
average.annual.values = TRUE,
cost.transf = "log10",
graphical.parameters = NULL,
...
)
x |
The output object from |
plot.breaks |
a vector of numeric values indicating the plot breaks for the Y axis (cost values) |
plot.type |
|
average.annual.values |
if |
cost.transf |
Type of transformation you want to apply on cost values.
Specify |
graphical.parameters |
set this to |
... |
additional arguments, none implemented for now |
https://github.com/Farewe/invacost
Leroy Boris, Kramer Andrew M, Vaissière Anne-Charlotte, Kourantidou Melina, Courchamp Franck & Diagne Christophe (2022). Analysing economic costs of invasive alien species with the invacost R package. Methods in Ecology and Evolution. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/2041-210X.13929")}
data(invacost)
### Cleaning steps
# Eliminating data with no information on starting and ending years
invacost <- invacost[-which(is.na(invacost$Probable_starting_year_adjusted)), ]
invacost <- invacost[-which(is.na(invacost$Probable_ending_year_adjusted)), ]
# Keeping only observed and reliable costs
invacost <- invacost[invacost$Implementation == "Observed", ]
invacost <- invacost[which(invacost$Method_reliability == "High"), ]
# Eliminating data with no usable cost value
invacost <- invacost[-which(is.na(invacost$Cost_estimate_per_year_2017_USD_exchange_rate)), ]
### Expansion
db.over.time <- expandYearlyCosts(invacost,
startcolumn = "Probable_starting_year_adjusted",
endcolumn = "Probable_ending_year_adjusted")
### Analysis
res <- summarizeCosts(db.over.time,
minimum.year = 1970,
maximum.year = 2020)
### Visualisation
plot(res)
plot(res, plot.type = "bars")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.