View source: R/predict.inbagg.R
| predict.inbagg | R Documentation |
Predicts the class membership of new observations through indirect bagging.
## S3 method for class 'inbagg'
predict(object, newdata, ...)
object |
object of class |
newdata |
data frame to be classified. |
... |
additional argumends corresponding to the predictive models. |
Predictions of class memberships are calculated. i.e. values of the
intermediate variables are predicted following pFUN and classified following cFUN,
see inbagg.
The vector of predicted classes is returned.
David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification with structured class definitions. Computational Statistics & Data Analysis 36, 209–225.
Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003), Diagnosis of glaucoma by indirect classifiers. Methods of Information in Medicine 1, 99-103.
inbagg
library("MASS")
library("rpart")
y <- as.factor(sample(1:2, 100, replace = TRUE))
W <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = diag(3))
X <- mvrnorm(n = 200, mu = rep(2, 3), Sigma = diag(3))
colnames(W) <- c("w1", "w2", "w3")
colnames(X) <- c("x1", "x2", "x3")
DATA <- data.frame(y, W, X)
pFUN <- list(list(formula = w1~x1+x2, model = lm),
list(model = rpart))
RES <- inbagg(y~w1+w2+w3~x1+x2+x3, data = DATA, pFUN = pFUN)
predict(RES, newdata = X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.