sbrier | R Documentation |
Model fit for survival data: the integrated Brier score for censored observations.
sbrier(obj, pred, btime= range(obj[,1]))
obj |
an object of class |
pred |
predicted values. Either a probability or a list of
|
btime |
numeric vector of times, the integrated Brier score is
computed if this is of |
There is no obvious criterion of model fit for censored data. The Brier score for censoring as well as it's integrated version were suggested by Graf et al (1999).
The integrated Brier score is always computed over a subset of the
interval given by the range of the time slot of the survival object obj
.
The (integrated) Brier score with attribute time
is returned.
Erika Graf, Claudia Schmoor, Willi Sauerbrei and Martin Schumacher (1999), Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18(17-18), 2529–2545.
More measures for the validation of predicted surival probabilities
are implemented in package pec
.
library("survival")
data("DLBCL", package = "ipred")
smod <- Surv(DLBCL$time, DLBCL$cens)
KM <- survfit(smod ~ 1)
# integrated Brier score up to max(DLBCL$time)
sbrier(smod, KM)
# integrated Brier score up to time=50
sbrier(smod, KM, btime=c(0, 50))
# Brier score for time=50
sbrier(smod, KM, btime=50)
# a "real" model: one single survival tree with Intern. Prognostic Index
# and mean gene expression in the first cluster as predictors
mod <- bagging(Surv(time, cens) ~ MGEc.1 + IPI, data=DLBCL, nbagg=1)
# this is a list of survfit objects (==KM-curves), one for each observation
# in DLBCL
pred <- predict(mod, newdata=DLBCL)
# integrated Brier score up to max(time)
sbrier(smod, pred)
# Brier score at time=50
sbrier(smod, pred, btime=50)
# artificial examples and illustrations
cleans <- function(x) { attr(x, "time") <- NULL; names(x) <- NULL; x }
n <- 100
time <- rpois(n, 20)
cens <- rep(1, n)
# checks, Graf et al. page 2536, no censoring at all!
# no information: \pi(t) = 0.5
a <- sbrier(Surv(time, cens), rep(0.5, n), time[50])
stopifnot(all.equal(cleans(a),0.25))
# some information: \pi(t) = S(t)
n <- 100
time <- 1:100
mod <- survfit(Surv(time, cens) ~ 1)
a <- sbrier(Surv(time, cens), rep(list(mod), n))
mymin <- mod$surv * (1 - mod$surv)
cleans(a)
sum(mymin)/diff(range(time))
# independent of ordering
rand <- sample(1:100)
b <- sbrier(Surv(time, cens)[rand], rep(list(mod), n)[rand])
stopifnot(all.equal(cleans(a), cleans(b)))
# 2 groups at different risk
time <- c(1:10, 21:30)
strata <- c(rep(1, 10), rep(2, 10))
cens <- rep(1, length(time))
# no information about the groups
a <- sbrier(Surv(time, cens), survfit(Surv(time, cens) ~ 1))
b <- sbrier(Surv(time, cens), rep(list(survfit(Surv(time, cens) ~1)), 20))
stopifnot(all.equal(a, b))
# risk groups known
mod <- survfit(Surv(time, cens) ~ strata)
b <- sbrier(Surv(time, cens), c(rep(list(mod[1]), 10), rep(list(mod[2]), 10)))
stopifnot(a > b)
### GBSG2 data
data("GBSG2", package = "TH.data")
thsum <- function(x) {
ret <- c(median(x), quantile(x, 0.25), quantile(x,0.75))
names(ret)[1] <- "Median"
ret
}
t(apply(GBSG2[,c("age", "tsize", "pnodes",
"progrec", "estrec")], 2, thsum))
table(GBSG2$menostat)
table(GBSG2$tgrade)
table(GBSG2$horTh)
# pooled Kaplan-Meier
mod <- survfit(Surv(time, cens) ~ 1, data=GBSG2)
# integrated Brier score
sbrier(Surv(GBSG2$time, GBSG2$cens), mod)
# Brier score at 5 years
sbrier(Surv(GBSG2$time, GBSG2$cens), mod, btime=1825)
# Nottingham prognostic index
GBSG2 <- GBSG2[order(GBSG2$time),]
NPI <- 0.2*GBSG2$tsize/10 + 1 + as.integer(GBSG2$tgrade)
NPI[NPI < 3.4] <- 1
NPI[NPI >= 3.4 & NPI <=5.4] <- 2
NPI[NPI > 5.4] <- 3
mod <- survfit(Surv(time, cens) ~ NPI, data=GBSG2)
plot(mod)
pred <- c()
survs <- c()
for (i in sort(unique(NPI)))
survs <- c(survs, getsurv(mod[i], 1825))
for (i in 1:nrow(GBSG2))
pred <- c(pred, survs[NPI[i]])
# Brier score of NPI at t=5 years
sbrier(Surv(GBSG2$time, GBSG2$cens), pred, btime=1825)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.