Description Usage Arguments Details Value Author(s) References See Also Examples
Same as learnIQ2
. Estimates the optimal secondstage decision
rule using a linear regression of the response on secondstage history
and treatment.
1 2 3 4 5 6 
formula 
stage 2 regression formula 
data 
data frame containing variables used in 
treatName 
character string indicating the stage 2 treatment name 
intNames 
vector of characters indicating the names of the variables that interact with the stage 2 treatment in the regression model 
H2 
matrix or data frame of secondstage covariates to include as main effects in the linear model 
Y 
response vector 
A2 
vector of secondstage randomized treatments 
s2ints 
indices pointing to columns of 
... 
other arguments to be passed to 
Fits a model of the form
E (Y  H2, A2) = H20^Tβ20 + A2*H21^Tβ21,
where H20 and H21 are summaries of
H2. For an object of type qLearnS2
,
summary(object)
and plot(object)
can be used for
evaluating model fit.
betaHat20 
estimated main effect coefficients; first is the intercept 
betaHat21 
estimated treatment interaction coefficients; first is the main effect of the secondstage treatment 
Ytilde 
Q2 function maximized over treatment a2; the predicted future outcome assuming optimal treatment is given at the second stage to be used in the next step of the Qlearning algorithm 
optA2 
vector of estimated optimal secondstage treatments for the patients in the training data 
s2Fit 

s2ints 
indicies of variables in 
Kristin A. Linn <[email protected]>, Eric B. Laber, Leonard A. Stefanski
Linn, K. A., Laber, E. B., Stefanski, L. A. (2015) "iqLearn: Interactive QLearning in R", Journal of Statistical Software, 64(1), 1–25.
Laber, E. B., Linn, K. A., and Stefanski, L. A. (2014) "Interactive model building for Qlearning", Biometrika, 101(4), 831847.
summary.qLearnS2
, plot.qLearnS2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  ## load in twostage BMI data
data (bmiData)
bmiData$A1[which (bmiData$A1=="MR")] = 1
bmiData$A1[which (bmiData$A1=="CD")] = 1
bmiData$A2[which (bmiData$A2=="MR")] = 1
bmiData$A2[which (bmiData$A2=="CD")] = 1
bmiData$A1 = as.numeric (bmiData$A1)
bmiData$A2 = as.numeric (bmiData$A2)
s1vars = bmiData[,1:4]
s2vars = bmiData[,c (1, 3, 5)]
a1 = bmiData[,7]
a2 = bmiData[,8]
## define response y to be the negative 12 month change in BMI from
## baseline
y = (bmiData[,6]  bmiData[,4])/bmiData[,4]
s2ints = c (2, 3)
## secondstage regression
fitQ2 = qLearnS2 (s2vars, y, a2, s2ints)
fitQ2 = qLearnS2 (y ~ gender + parent_BMI + month4_BMI +
A2*(parent_BMI + month4_BMI), data=bmiData, "A2", c("parent_BMI",
"month4_BMI"))
summary (fitQ2)
plot (fitQ2)

Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.