Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function calculates the isotopic pattern (fine structures) for a given chemical formula. It returns a list of accurate masses, abundances and isotopic compositions. The isotopic characterisitics of all elements contained in a molecule can be defined by the user as argument to the function.
1 | isopattern(iso_list, compound, limit)
|
iso_list |
a list or dataframe with four columns, specifying the isotopic composition of the elements found in the chemical formula of the compound (see dataset iso_list contained in this package): Column one contains the element name, e.g. C. Column two contains the isotope names of the element, e.g. 12C and 13C. Columns three and four contain the exact masses and abundances of the isotopes, respectively. Individual isotopes (e.g. for labelled compounds) must be defined in the element name column (cp. iso_list data set). |
compound |
character string of a molecular formula for the compound for which an isotopic pattern needs to be calculated. All counts of all elements must be provided, i.e. C1H4 is a valid argument whereas CH4 is not. Element names must be followed by numbers (atom counts of that element), except for numbers in square brackets indicating individual isotopes defined in the element name column of iso_list, e.g. [14]C or [18]O. For example, [13]C2C35H67N1O13 is the molecular formula of erythromycin labeled at two C-positions with [13]C; C37H67N1O13 is the molecular formula of the unlabeled compound. |
limit |
abundance limit; isotopic compositions equal to or below that abundance are dropped from further calculations. |
Starting from a monoisotopic peak of a given molecule (e.g. C2H6, with atoms of all elements set to those isotopes with highest abundance), the isotopic compositions and the concomitant abundances of isotopologues are iteratively altered towards less abundant isotopes. For a first iteration (generation i=1), [12]C2[1]H6 would hence be changed to both [12]C1[13]C1[1]H6 and [12]C2[1]H5[2]H1. Similarly, the latter two isotopologues then again lead to two combinations each for C and H at the second generation i=2. At each generation level i, a number i of isotopes contained in the monoisotopic peak have been exchanged for less abundant isotopes over all possible combinatorial changes of size i. Abundances are checked for <= the limit argument. If below limit, the concerned isotopologues are not changed forward to the next generation i+1. Different combinatorial changes carried from one generation to the next can eventually lead to the same isotopic composition at a given generation, causing double occurrences of some peaks in a generation. Therefore, peaks are checked against double isotopologues at each generation level.
The methodology used for updating abundances and masses when progressing from generation i to i+1 resembles that of Li et al. (2008). However, the updating does not strictly follow increasing nucleon numbers. Instead, generations of isotopic compositions are derived from an initial monoisotopic peak (i=0) via exchanging more abundant for less abundant isotopes.
peaks |
A peak matrix with rows corresponding to single peaks; sorted by increasing masses. First column = mass. Second column = abundance. Third column = generation number. Fourth column = limit reached? Rest columns = isotopic composition of that isotopologue peak. |
Too high values (e.g.1E-5) for the limit may prevent the calculation of isotopologues for molecules containing both (1) several abundant isotopes of one element (e.g.[35]Cl and [37]Cl) and (2) many atom counts for the latter (e.g. hypothetical Cl500 in examples). On the other hand, too low values for the limit may lead to the unnecessary calculation of peaks with very little abundance. The user is requested to find a trade-off, possibly by comparing peak lists derived from different limit settings.
The maximum number of peaks that can be calculated is currently restricted to 5e+05.
Martin Loos, loosmart@eawag.ch
Li, L., Kresh, J., Karabacak, N., Cobb, J., Agar, J. and Hong, P. (2008). A Hierarchical Algorithm for Calculating the Isotopic Fine Structures of Molecules. Journal of the American Society for Mass Spectrometry, 19, 1867–1874.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ## firstly, load list of isotope data ##########################################
data(iso_list);
iso_list;
## calculate isotopic peaks for coffein-D9 #####################################
peaks<-isopattern(iso_list,"C8H1N4O2D9",1e-10);
peaks;
# plot with y = absolute abundance
plot(peaks[,1],peaks[,2],type="h",xlab="mass",ylab="absolute abundance");
# plot with y = relative abundance scaled to the most intensive peak
peaks2<-peaks;
peaks2[,2]<-peaks2[,2]/max(peaks2[,2]);
plot(peaks2[,1],peaks2[,2],type="h",xlab="mass",ylab="relative abundance");
# plot with y = relative abundance scaled to the monoisotopic peak
# which, in this case, makes no difference
peaks2<-peaks;
peaks2[,2]<-peaks2[,2]/peaks2[1,2];
plot(peaks2[,1],peaks2[,2],type="h",xlab="mass",ylab="relative abundance");
## calculate isotopic peaks for the hypothetical compound Cl500 ################
# use a too low value for limit -> plot shows only two peaks:
system.time(peaks<-isopattern(iso_list,"Cl500",1e-10));
plot(peaks[,1],peaks[,2],type="h",xlab="mass",ylab="absolute abundance");
# reset limit to a very low value for this "difficult" compound, then plot again:
system.time(peaks<-isopattern(iso_list,"Cl500",1e-100));
plot(peaks[,1],peaks[,2],type="h",xlab="mass",ylab="absolute abundance");
|
element isotope mass abundance
1 H 1H 1.007825 0.999885
2 H 2H 2.014102 0.000115
3 C 12C 12.000000 0.989300
4 C 13C 13.003355 0.010700
5 N 14N 14.003074 0.996360
6 N 15N 15.000109 0.003640
7 O 16O 15.994915 0.997570
8 O 17O 16.999132 0.000380
9 O 18O 17.999160 0.002050
10 S 32S 31.972071 0.949900
11 S 33S 32.971459 0.007500
12 S 34S 33.967867 0.042500
13 S 35S 35.000000 0.000000
14 S 36S 35.967081 0.000100
15 Cl 35Cl 34.968853 0.757600
16 Cl 36Cl 36.000000 0.000000
17 Cl 37Cl 36.965903 0.242400
18 Li 6Li 6.015122 0.075900
19 Li 7Li 7.016004 0.924100
20 B 10B 10.012937 0.199000
21 B 11B 11.009305 0.801000
22 F 19F 18.998403 1.000000
23 Na 23Na 22.989770 1.000000
24 Mg 24Mg 23.985042 0.789900
25 Mg 25Mg 24.985837 0.100000
26 Mg 26Mg 25.982593 0.110100
27 Si 28Si 27.976926 0.922230
28 Si 29Si 28.976495 0.046850
29 Si 30Si 29.973770 0.030920
30 P 31P 30.973761 1.000000
31 K 39K 38.963707 0.932581
32 K 40K 39.963999 0.000117
33 K 41K 40.961826 0.067302
34 Ca 40Ca 39.962591 0.969410
35 Ca 41Ca 41.000000 0.000000
36 Ca 42Ca 41.958618 0.006470
37 Ca 43Ca 42.958767 0.001350
38 Ca 44Ca 43.955481 0.020860
39 Ca 45Ca 45.000000 0.000000
40 Ca 46Ca 45.953693 0.000040
41 Ca 47Ca 47.000000 0.000000
42 Ca 48Ca 47.952533 0.001870
43 Mn 55Mn 54.938049 1.000000
44 Fe 54Fe 53.939615 0.058450
45 Fe 55Fe 55.000000 0.000000
46 Fe 56Fe 55.934942 0.917540
47 Fe 57Fe 56.935398 0.021190
48 Fe 58Fe 57.933280 0.002820
49 Br 79Br 78.918338 0.506900
50 Br 80Br 80.000000 0.000000
51 Br 81Br 80.916291 0.493100
52 I 127I 126.904468 1.000000
53 [15]N 15N 15.000109 1.000000
54 [13]C 13C 13.003355 1.000000
55 D 2H 2.014102 1.000000
56 [37]Cl 37Cl 36.965903 1.000000
57 [18]O 18O 17.999160 1.000000
58 [16]O 16O 15.994915 1.000000
59 [12]C 12C 12.000000 1.000000
mass abundance generation stop? 12C 13C 1H 2H 14N 15N 16O 17O 18O
[1,] 203.1369 8.997586e-01 0 0 8 0 1 0 4 0 2 0 0
[2,] 204.1339 1.314835e-02 1 0 8 0 1 0 3 1 2 0 0
[3,] 204.1402 7.785236e-02 1 0 7 1 1 0 4 0 2 0 0
[4,] 204.1411 6.854823e-04 1 0 8 0 1 0 4 0 1 1 0
[5,] 204.1431 1.034841e-04 1 0 8 0 0 1 4 0 2 0 0
[6,] 205.1309 7.205224e-05 2 0 8 0 1 0 2 2 2 0 0
[7,] 205.1373 1.137671e-03 2 0 7 1 1 0 3 1 2 0 0
[8,] 205.1381 1.001708e-05 2 0 8 0 1 0 3 1 1 1 0
[9,] 205.1402 1.512234e-06 2 0 8 0 0 1 3 1 2 0 0
[10,] 205.1411 3.697997e-03 1 0 8 0 1 0 4 0 1 0 1
[11,] 205.1436 2.947105e-03 2 0 6 2 1 0 4 0 2 0 0
[12,] 205.1444 5.931192e-05 2 0 7 1 1 0 4 0 1 1 0
[13,] 205.1453 1.305589e-07 2 0 8 0 1 0 4 0 0 2 0
[14,] 205.1465 8.954051e-06 2 0 7 1 0 1 4 0 2 0 0
[15,] 205.1474 7.883953e-08 2 0 8 0 0 1 4 0 1 1 0
[16,] 206.1280 1.754855e-07 3 0 8 0 1 0 1 3 2 0 0
[17,] 206.1343 6.234379e-06 3 0 7 1 1 0 2 2 2 0 0
[18,] 206.1352 5.489309e-08 3 0 8 0 1 0 2 2 1 1 0
[19,] 206.1372 8.286960e-09 3 0 8 0 0 1 2 2 2 0 0
[20,] 206.1381 5.403953e-05 2 0 8 0 1 0 3 1 1 0 1
[21,] 206.1406 4.306661e-05 3 0 6 2 1 0 3 1 2 0 0
[22,] 206.1415 8.667365e-07 3 0 7 1 1 0 3 1 1 1 0
[23,] 206.1423 1.907882e-09 3 0 8 0 1 0 3 1 0 2 0
[24,] 206.1435 1.308473e-07 3 0 7 1 0 1 3 1 2 0 0
[25,] 206.1444 1.152097e-09 3 0 8 0 0 1 3 1 1 1 0
[26,] 206.1445 3.199722e-04 2 0 7 1 1 0 4 0 1 0 1
[27,] 206.1453 1.408662e-06 2 0 8 0 1 0 4 0 0 1 1
[28,] 206.1469 6.375017e-05 3 0 5 3 1 0 4 0 2 0 0
[29,] 206.1474 4.253185e-07 2 0 8 0 0 1 4 0 1 0 1
[30,] 206.1478 2.245256e-06 3 0 6 2 1 0 4 0 1 1 0
[31,] 206.1487 1.129672e-08 3 0 7 1 1 0 4 0 0 2 0
[32,] 206.1499 3.389560e-07 3 0 6 2 0 1 4 0 2 0 0
[33,] 206.1507 6.821655e-09 3 0 7 1 0 1 4 0 1 1 0
[34,] 206.1516 1.501600e-11 3 1 8 0 0 1 4 0 0 2 0
[35,] 207.1250 1.602752e-10 4 0 8 0 1 0 0 4 2 0 0
[36,] 207.1313 1.518403e-08 4 0 7 1 1 0 1 3 2 0 0
[37,] 207.1322 1.336939e-10 4 0 8 0 1 0 1 3 1 1 0
[38,] 207.1343 2.018316e-11 4 1 8 0 0 1 1 3 2 0 0
[39,] 207.1352 2.961338e-07 3 0 8 0 1 0 2 2 1 0 1
[40,] 207.1376 2.360027e-07 4 0 6 2 1 0 2 2 2 0 0
[41,] 207.1385 4.749670e-09 4 0 7 1 1 0 2 2 1 1 0
[42,] 207.1394 1.045509e-11 4 1 8 0 1 0 2 2 0 2 0
[43,] 207.1406 7.170361e-10 4 0 7 1 0 1 2 2 2 0 0
[44,] 207.1414 6.313431e-12 4 1 8 0 0 1 2 2 1 1 0
[45,] 207.1415 4.675815e-06 3 0 7 1 1 0 3 1 1 0 1
[46,] 207.1424 2.058504e-08 3 0 8 0 1 0 3 1 0 1 1
[47,] 207.1440 9.315935e-07 4 0 5 3 1 0 3 1 2 0 0
[48,] 207.1444 6.215261e-09 3 0 8 0 0 1 3 1 1 0 1
[49,] 207.1448 3.281035e-08 4 0 6 2 1 0 3 1 1 1 0
[50,] 207.1454 3.799680e-06 2 0 8 0 1 0 4 0 0 0 2
[51,] 207.1457 1.650811e-10 4 0 7 1 1 0 3 1 0 2 0
[52,] 207.1469 4.953230e-09 4 0 6 2 0 1 3 1 2 0 0
[53,] 207.1478 9.968616e-11 4 1 7 1 0 1 3 1 1 1 0
[54,] 207.1478 1.211256e-05 3 0 6 2 1 0 4 0 1 0 1
[55,] 207.1486 2.194317e-13 4 1 8 0 0 1 3 1 0 2 0
[56,] 207.1487 1.218856e-07 3 0 7 1 1 0 4 0 0 1 1
[57,] 207.1503 8.618807e-07 4 0 4 4 1 0 4 0 2 0 0
[58,] 207.1507 3.680104e-08 3 0 7 1 0 1 4 0 1 0 1
[59,] 207.1512 4.856815e-08 4 0 5 3 1 0 4 0 1 1 0
[60,] 207.1516 1.620147e-10 3 0 8 0 0 1 4 0 0 1 1
[61,] 207.1520 4.276377e-10 4 0 6 2 1 0 4 0 0 2 0
[62,] 207.1532 7.332113e-09 4 0 5 3 0 1 4 0 2 0 0
[63,] 207.1541 2.582341e-10 4 0 6 2 0 1 4 0 1 1 0
[64,] 207.1549 1.299272e-12 4 1 7 1 0 1 4 0 0 2 0
[65,] 208.1284 1.386795e-11 5 1 7 1 1 0 0 4 2 0 0
[66,] 208.1292 1.221059e-13 5 1 8 0 1 0 0 4 1 1 0
[67,] 208.1313 1.843377e-14 5 1 8 0 0 1 0 4 2 0 0
[68,] 208.1322 7.212433e-10 4 0 8 0 1 0 1 3 1 0 1
[69,] 208.1347 5.747922e-10 5 0 6 2 1 0 1 3 2 0 0
[70,] 208.1355 1.156797e-11 5 1 7 1 1 0 1 3 1 1 0
[71,] 208.1364 2.546371e-14 5 1 8 0 1 0 1 3 0 2 0
[72,] 208.1376 1.746364e-12 5 1 7 1 0 1 1 3 2 0 0
[73,] 208.1385 1.537656e-14 5 1 8 0 0 1 1 3 1 1 0
[74,] 208.1385 2.562322e-08 4 0 7 1 1 0 2 2 1 0 1
[75,] 208.1394 1.128050e-10 4 0 8 0 1 0 2 2 0 1 1
[76,] 208.1410 5.105083e-09 5 0 5 3 1 0 2 2 2 0 0
[77,] 208.1415 3.405930e-11 4 1 8 0 0 1 2 2 1 0 1
[78,] 208.1419 1.797990e-10 5 0 6 2 1 0 2 2 1 1 0
[79,] 208.1424 5.552545e-08 3 0 8 0 1 0 3 1 0 0 2
[80,] 208.1427 9.046356e-13 5 1 7 1 1 0 2 2 0 2 0
[81,] 208.1439 2.714344e-11 5 1 6 2 0 1 2 2 2 0 0
[82,] 208.1448 5.462749e-13 5 1 7 1 0 1 2 2 1 1 0
[83,] 208.1449 1.770032e-07 4 0 6 2 1 0 3 1 1 0 1
[84,] 208.1457 1.781138e-09 4 0 7 1 1 0 3 1 0 1 1
[85,] 208.1473 1.259483e-08 5 0 4 4 1 0 3 1 2 0 0
[86,] 208.1478 5.377806e-10 4 0 7 1 0 1 3 1 1 0 1
[87,] 208.1482 7.097357e-10 5 0 5 3 1 0 3 1 1 1 0
[88,] 208.1486 2.367552e-12 4 1 8 0 0 1 3 1 0 1 1
[89,] 208.1487 3.287704e-07 3 0 7 1 1 0 4 0 0 0 2
[90,] 208.1490 6.249152e-12 5 1 6 2 1 0 3 1 0 2 0
[91,] 208.1502 1.071456e-10 5 0 5 3 0 1 3 1 2 0 0
[92,] 208.1511 3.773624e-12 5 1 6 2 0 1 3 1 1 1 0
[93,] 208.1512 2.620124e-07 4 0 5 3 1 0 4 0 1 0 1
[94,] 208.1516 4.370134e-10 3 0 8 0 0 1 4 0 0 0 2
[95,] 208.1520 1.898651e-14 5 1 7 1 0 1 3 1 0 2 0
[96,] 208.1520 4.613986e-09 4 0 6 2 1 0 4 0 0 1 1
[97,] 208.1536 7.457494e-09 5 0 3 5 1 0 4 0 2 0 0
[98,] 208.1541 1.393105e-09 4 0 6 2 0 1 4 0 1 0 1
[99,] 208.1545 6.566249e-10 5 0 4 4 1 0 4 0 1 1 0
[100,] 208.1550 1.401846e-11 4 1 7 1 0 1 4 0 0 1 1
[101,] 208.1554 9.250427e-12 5 1 5 3 1 0 4 0 0 2 0
[102,] 208.1566 9.912768e-11 5 1 4 4 0 1 4 0 2 0 0
[103,] 208.1574 5.585980e-12 5 1 5 3 0 1 4 0 1 1 0
[104,] 208.1583 4.918400e-14 5 1 6 2 0 1 4 0 0 2 0
[105,] 209.1293 6.587292e-13 5 1 8 0 1 0 0 4 1 0 1
[106,] 209.1317 5.249718e-13 6 1 6 2 1 0 0 4 2 0 0
[107,] 209.1356 6.240617e-11 5 1 7 1 1 0 1 3 1 0 1
[108,] 209.1364 2.747401e-13 5 1 8 0 1 0 1 3 0 1 1
[109,] 209.1380 1.243359e-11 6 1 5 3 1 0 1 3 2 0 0
[110,] 209.1385 8.295252e-14 5 1 8 0 0 1 1 3 1 0 1
[111,] 209.1389 4.379062e-13 6 1 6 2 1 0 1 3 1 1 0
[112,] 209.1394 3.042765e-10 4 0 8 0 1 0 2 2 0 0 2
[113,] 209.1410 6.610871e-14 6 1 6 2 0 1 1 3 2 0 0
[114,] 209.1419 9.699682e-10 5 0 6 2 1 0 2 2 1 0 1
[115,] 209.1428 9.760542e-12 5 1 7 1 1 0 2 2 0 1 1
[116,] 209.1444 6.901899e-11 6 1 4 4 1 0 2 2 2 0 0
[117,] 209.1448 2.947009e-12 5 1 7 1 0 1 2 2 1 0 1
[118,] 209.1452 3.889314e-12 6 1 5 3 1 0 2 2 1 1 0
[119,] 209.1457 1.297406e-14 5 1 8 0 0 1 2 2 0 1 1
[120,] 209.1457 4.804385e-09 4 0 7 1 1 0 3 1 0 0 2
[121,] 209.1461 3.424502e-14 6 1 6 2 1 0 2 2 0 2 0
[122,] 209.1473 5.871521e-13 6 1 5 3 0 1 2 2 2 0 0
[123,] 209.1481 2.067926e-14 6 1 6 2 0 1 2 2 1 1 0
[124,] 209.1482 3.828837e-09 5 0 5 3 1 0 3 1 1 0 1
[125,] 209.1487 6.386161e-12 4 1 8 0 0 1 3 1 0 0 2
[126,] 209.1491 6.742507e-11 5 1 6 2 1 0 3 1 0 1 1
[127,] 209.1507 1.089778e-10 6 0 3 5 1 0 3 1 2 0 0
[128,] 209.1511 2.035771e-11 5 1 6 2 0 1 3 1 1 0 1
[129,] 209.1515 9.595386e-12 6 1 4 4 1 0 3 1 1 1 0
[130,] 209.1520 2.048544e-13 5 1 7 1 0 1 3 1 0 1 1
[131,] 209.1521 1.244562e-08 4 0 6 2 1 0 4 0 0 0 2
[132,] 209.1524 1.351783e-13 6 1 5 3 1 0 3 1 0 2 0
[133,] 209.1536 1.448572e-12 6 1 4 4 0 1 3 1 2 0 0
[134,] 209.1545 8.162899e-14 6 1 5 3 0 1 3 1 1 1 0
[135,] 209.1545 3.542319e-09 5 0 4 4 1 0 4 0 1 0 1
[136,] 209.1550 3.781295e-11 4 1 7 1 0 1 4 0 0 0 2
[137,] 209.1554 9.980724e-11 5 1 5 3 1 0 4 0 0 1 1
[138,] 209.1570 4.032911e-11 6 1 2 6 1 0 4 0 2 0 0
[139,] 209.1575 3.013489e-11 5 1 5 3 0 1 4 0 1 0 1
[140,] 209.1579 5.681501e-12 6 1 3 5 1 0 4 0 1 1 0
[141,] 209.1583 5.306694e-13 5 1 6 2 0 1 4 0 0 1 1
[142,] 209.1587 1.250626e-13 6 1 4 4 1 0 4 0 0 2 0
[143,] 209.1599 8.577104e-13 6 1 3 5 0 1 4 0 2 0 0
[144,] 209.1608 7.552055e-14 6 1 4 4 0 1 4 0 1 1 0
[145,] 210.1365 7.410752e-13 5 1 8 0 1 0 1 3 0 0 2
[146,] 210.1389 2.362389e-12 6 1 6 2 1 0 1 3 1 0 1
[147,] 210.1428 2.632778e-11 5 1 7 1 1 0 2 2 0 0 2
[148,] 210.1452 2.098183e-11 6 1 5 3 1 0 2 2 1 0 1
[149,] 210.1457 3.499582e-14 5 1 8 0 0 1 2 2 0 0 2
[150,] 210.1461 3.694858e-13 6 1 6 2 1 0 2 2 0 1 1
[151,] 210.1477 5.971925e-13 7 1 3 5 1 0 2 2 2 0 0
[152,] 210.1482 1.115592e-13 6 1 6 2 0 1 2 2 1 0 1
[153,] 210.1491 1.818702e-10 5 0 6 2 1 0 3 1 0 0 2
[154,] 210.1516 5.176458e-11 6 1 4 4 1 0 3 1 1 0 1
[155,] 210.1520 5.525679e-13 5 1 7 1 0 1 3 1 0 0 2
[156,] 210.1524 1.458502e-12 6 1 5 3 1 0 3 1 0 1 1
[157,] 210.1540 5.893371e-13 7 1 2 6 1 0 3 1 2 0 0
[158,] 210.1545 4.403669e-13 6 1 5 3 0 1 3 1 1 0 1
[159,] 210.1549 8.302487e-14 7 1 3 5 1 0 3 1 1 1 0
[160,] 210.1554 2.692169e-10 5 0 5 3 1 0 4 0 0 0 2
[161,] 210.1570 1.253389e-14 7 1 3 5 0 1 3 1 2 0 0
[162,] 210.1579 3.065020e-11 6 1 3 5 1 0 4 0 1 0 1
[163,] 210.1583 1.431411e-12 5 1 6 2 0 1 4 0 0 0 2
[164,] 210.1588 1.349360e-12 6 1 4 4 1 0 4 0 0 1 1
[165,] 210.1608 4.074135e-13 6 1 4 4 0 1 4 0 1 0 1
[166,] 211.1461 9.966393e-13 6 1 6 2 1 0 2 2 0 0 2
[167,] 211.1525 3.934118e-12 6 1 5 3 1 0 3 1 0 0 2
[168,] 211.1549 4.478973e-13 7 1 3 5 1 0 3 1 1 0 1
[169,] 211.1554 2.091748e-14 6 1 6 2 0 1 3 1 0 0 2
[170,] 211.1588 3.639721e-12 6 1 4 4 1 0 4 0 0 0 2
[171,] 211.1617 3.096350e-14 6 1 5 3 0 1 4 0 0 0 2
2H
[1,] 9
[2,] 9
[3,] 9
[4,] 9
[5,] 9
[6,] 9
[7,] 9
[8,] 9
[9,] 9
[10,] 9
[11,] 9
[12,] 9
[13,] 9
[14,] 9
[15,] 9
[16,] 9
[17,] 9
[18,] 9
[19,] 9
[20,] 9
[21,] 9
[22,] 9
[23,] 9
[24,] 9
[25,] 9
[26,] 9
[27,] 9
[28,] 9
[29,] 9
[30,] 9
[31,] 9
[32,] 9
[33,] 9
[34,] 9
[35,] 9
[36,] 9
[37,] 9
[38,] 9
[39,] 9
[40,] 9
[41,] 9
[42,] 9
[43,] 9
[44,] 9
[45,] 9
[46,] 9
[47,] 9
[48,] 9
[49,] 9
[50,] 9
[51,] 9
[52,] 9
[53,] 9
[54,] 9
[55,] 9
[56,] 9
[57,] 9
[58,] 9
[59,] 9
[60,] 9
[61,] 9
[62,] 9
[63,] 9
[64,] 9
[65,] 9
[66,] 9
[67,] 9
[68,] 9
[69,] 9
[70,] 9
[71,] 9
[72,] 9
[73,] 9
[74,] 9
[75,] 9
[76,] 9
[77,] 9
[78,] 9
[79,] 9
[80,] 9
[81,] 9
[82,] 9
[83,] 9
[84,] 9
[85,] 9
[86,] 9
[87,] 9
[88,] 9
[89,] 9
[90,] 9
[91,] 9
[92,] 9
[93,] 9
[94,] 9
[95,] 9
[96,] 9
[97,] 9
[98,] 9
[99,] 9
[100,] 9
[101,] 9
[102,] 9
[103,] 9
[104,] 9
[105,] 9
[106,] 9
[107,] 9
[108,] 9
[109,] 9
[110,] 9
[111,] 9
[112,] 9
[113,] 9
[114,] 9
[115,] 9
[116,] 9
[117,] 9
[118,] 9
[119,] 9
[120,] 9
[121,] 9
[122,] 9
[123,] 9
[124,] 9
[125,] 9
[126,] 9
[127,] 9
[128,] 9
[129,] 9
[130,] 9
[131,] 9
[132,] 9
[133,] 9
[134,] 9
[135,] 9
[136,] 9
[137,] 9
[138,] 9
[139,] 9
[140,] 9
[141,] 9
[142,] 9
[143,] 9
[144,] 9
[145,] 9
[146,] 9
[147,] 9
[148,] 9
[149,] 9
[150,] 9
[151,] 9
[152,] 9
[153,] 9
[154,] 9
[155,] 9
[156,] 9
[157,] 9
[158,] 9
[159,] 9
[160,] 9
[161,] 9
[162,] 9
[163,] 9
[164,] 9
[165,] 9
[166,] 9
[167,] 9
[168,] 9
[169,] 9
[170,] 9
[171,] 9
user system elapsed
0.202 0.032 0.235
user system elapsed
2.710 0.058 2.769
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.