acf_n_plots | R Documentation |
Generate N ACF plots of individual or aggregated time series.
acf_n_plots( x, n = 5, split_by = NULL, cond = NULL, max_lag = NULL, fun = mean, plot = TRUE, random = F, mfrow = NULL, add = FALSE, print.summary = getOption("itsadug_print"), ... )
x |
A vector with time series data, typically residuals of a regression model. |
n |
The number of plots to generate. |
split_by |
List of vectors (each with equal length as |
cond |
Named list with a selection of the time series events
specified in |
max_lag |
Maximum lag at which to calculate the acf. Default is the maximum for the longest time series. |
fun |
The function used when aggregating over time series
(depending on the value of |
plot |
Logical: whether or not to produce plot. Default is TRUE. |
random |
Logical: determine randomly which |
mfrow |
A vector of the form c(nr, nc). The figures will be drawn in an nr-by-nc array on the device by rows. |
add |
Logical: whether to add the plots to an exiting plot window or not. Default is FALSE. |
print.summary |
Logical: whether or not to print summary.
Default set to the print info messages option
(see |
... |
Other arguments for plotting, see |
n
ACF plots providing information about the autocorrelation
in x
.
Jacolien van Rij, R. Harald Baayen
Use acf
for the original ACF function,
and acf_plot
for an ACF that takes into account time series
in the data.
Other functions for model criticism:
acf_plot()
,
acf_resid()
,
derive_timeseries()
,
resid_gam()
,
start_event()
,
start_value_rho()
data(simdat) # Separate ACF for each time series: acf_n_plots(simdat$Y, split_by=list(simdat$Subject, simdat$Trial)) # Average ACF per participant: acf_n_plots(simdat$Y, split_by=list(simdat$Subject)) ## Not run: # Data treated as single time series. Plot is added to current window. # Note: 1 time series results in 1 plot. acf_n_plots(simdat$Y, add=TRUE) # Plot 4 ACF plots doesn't work without splitting data: acf_n_plots(simdat$Y, add=TRUE, n=4) # Plot ACFs of 4 randomly selected time series: acf_n_plots(simdat$Y, random=TRUE, n=4, add=TRUE, split_by=list(simdat$Subject, simdat$Trial)) ## End(Not run) #--------------------------------------------- # When using model residuals #--------------------------------------------- ## Not run: # add missing values to simdat: simdat[sample(nrow(simdat), 15),]$Y <- NA # simple linear model: m1 <- lm(Y ~ Time, data=simdat) # This will generate an error: # acf_n_plots(resid(m1), split_by=list(simdat$Subject, simdat$Trial)) # This should work: el.na <- missing_est(m1) acf_n_plots(resid(m1), split_by=list(simdat[-el.na,]$Subject, simdat[-el.na,]$Trial)) # This should also work: simdat$res <- NA simdat[!is.na(simdat$Y),]$res <- resid(m1) acf_n_plots(simdat$res, split_by=list(simdat$Subject, simdat$Trial)) ## End(Not run) # see the vignette for examples: vignette('acf', package='itsadug')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.