View source: R/independent_response.R
independent_response | R Documentation |
Calculate the independent responses of each variables within the model.
independent_response(model, var_occ, variables, si = 1000, visualize = FALSE)
model |
(Any predictive model). It is |
var_occ |
( |
variables |
( |
si |
( |
visualize |
( |
The values show how each environmental variable independently affects the modeling prediction. They show how the predicted result only using this variable changes as it is varied.
(IndependentResponse
) A list of
responses_cont (list
) A list of response values of continuous
variables
responses_cat (list
) A list of response values of categorical
variables
Elith, Jane, et al. "The evaluation strip: a new and robust method for plotting predicted responses from species distribution models." Ecological modelling 186.3 (2005): 280-289.\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ecolmodel.2004.12.007")}
plot.IndependentResponse
# Using a pseudo presence-only occurrence dataset of
# virtual species provided in this package
library(dplyr)
library(sf)
library(stars)
library(itsdm)
data("occ_virtual_species")
obs_df <- occ_virtual_species %>% filter(usage == "train")
eval_df <- occ_virtual_species %>% filter(usage == "eval")
x_col <- "x"
y_col <- "y"
obs_col <- "observation"
# Format the observations
obs_train_eval <- format_observation(
obs_df = obs_df, eval_df = eval_df,
x_col = x_col, y_col = y_col, obs_col = obs_col,
obs_type = "presence_only")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12, 16))
# With imperfect_presence mode,
mod <- isotree_po(
obs_mode = "imperfect_presence",
obs = obs_train_eval$obs,
obs_ind_eval = obs_train_eval$eval,
variables = env_vars, ntrees = 10,
sample_size = 0.8, ndim = 2L,
seed = 123L, nthreads = 1,
response = FALSE,
spatial_response = FALSE,
check_variable = FALSE)
independent_responses <- independent_response(
model = mod$model,
var_occ = mod$vars_train,
variables = mod$variables)
plot(independent_responses)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.