View source: R/shap_dependence.R
shap_dependence | R Documentation |
Calculate how a species responses to environmental variables using Shapley values.
shap_dependence(
model,
var_occ,
variables,
si = 1000,
shap_nsim = 100,
visualize = FALSE,
seed = 10,
pfun = .pfun_shap
)
model |
( |
var_occ |
( |
variables |
( |
si |
( |
shap_nsim |
( |
visualize |
( |
seed |
( |
pfun |
( |
The values show how each environmental variable independently affects the modeling prediction. They show how the Shapley value of each variable changes as its value is varied.
(ShapDependence
) A list of
dependences_cont (list
) A list of Shapley values of continuous variables
dependences_cat (list
) A list of Shapley values of categorical variables
feature_values (data.frame
) A table of feature values
Strumbelj, Erik, and Igor Kononenko. "Explaining prediction models and individual predictions with feature contributions." Knowledge and information systems 41.3 (2014): 647-665.\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10115-013-0679-x")}
plot.ShapDependence
explain
in fastshap
# Using a pseudo presence-only occurrence dataset of
# virtual species provided in this package
library(dplyr)
library(sf)
library(stars)
library(itsdm)
data("occ_virtual_species")
obs_df <- occ_virtual_species %>% filter(usage == "train")
eval_df <- occ_virtual_species %>% filter(usage == "eval")
x_col <- "x"
y_col <- "y"
obs_col <- "observation"
# Format the observations
obs_train_eval <- format_observation(
obs_df = obs_df, eval_df = eval_df,
x_col = x_col, y_col = y_col, obs_col = obs_col,
obs_type = "presence_only")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12, 16))
# With imperfect_presence mode,
mod <- isotree_po(
obs_mode = "imperfect_presence",
obs = obs_train_eval$obs,
obs_ind_eval = obs_train_eval$eval,
variables = env_vars, ntrees = 10,
sample_size = 0.8, ndim = 2L,
seed = 123L, nthreads = 1,
response = FALSE,
spatial_response = FALSE,
check_variable = FALSE)
var_dependence <- shap_dependence(
model = mod$model,
var_occ = mod$vars_train,
variables = mod$variables)
plot(var_dependence, target_var = "bio1", related_var = "bio16")
## Not run:
##### Use Random Forest model as an external model ########
library(randomForest)
# Prepare data
data("occ_virtual_species")
obs_df <- occ_virtual_species %>%
filter(usage == "train")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12)) %>%
split()
model_data <- stars::st_extract(
env_vars, at = as.matrix(obs_df %>% select(x, y))) %>%
as.data.frame()
names(model_data) <- names(env_vars)
model_data <- model_data %>%
mutate(occ = obs_df[['observation']])
model_data$occ <- as.factor(model_data$occ)
mod_rf <- randomForest(
occ ~ .,
data = model_data,
ntree = 200)
pfun <- function(X.model, newdata) {
# for data.frame
predict(X.model, newdata, type = "prob")[, "1"]
}
shap_dependences <- shap_dependence(
model = mod_rf,
var_occ = model_data %>% select(-occ),
variables = env_vars,
visualize = FALSE,
seed = 10,
pfun = pfun)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.