View source: R/suspicious_env_outliers.R
suspicious_env_outliers | R Documentation |
Run outlier.tree
to detect suspicious outliers in observations.
suspicious_env_outliers(
occ,
occ_crs = 4326,
variables,
rm_outliers = FALSE,
seed = 10L,
...,
visualize = TRUE
)
occ |
( |
occ_crs |
( |
variables |
( |
rm_outliers |
( |
seed |
( |
... |
Other arguments passed to function |
visualize |
( |
Please check more details in R documentation of function
outlier.tree
in package outliertree
and their GitHub.
(EnvironmentalOutlier
) A list that contains
outliers (sf
) The sf
points of outliers
outlier_details (tibble
) A table of outlier details returned from
function outlier.tree
in package outliertree
pts_occ (sf
) The sf
points of occurrence.
If rm_outliers
is TRUE
, outliers are deleted from points of
occurrence. If FALSE
, the full observations are returned.
print.EnvironmentalOutlier
, plot.EnvironmentalOutlier
outlier.tree
in package outliertree
library(dplyr)
library(sf)
library(stars)
library(itsdm)
data("occ_virtual_species")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12))
occ_outliers <- suspicious_env_outliers(
occ = occ_virtual_species, variables = env_vars,
z_outlier = 3.5, outliers_print = 4L, nthreads = 1)
occ_outliers
plot(occ_outliers)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.