jSDM_binomial_probit_long_format: Binomial probit regression on long format data

View source: R/jSDM_binomial_probit_long_format.R

jSDM_binomial_probit_long_formatR Documentation

Binomial probit regression on long format data

Description

The jSDM_binomial_probit_long_format function performs a Binomial probit regression in a Bayesian framework. The function calls a Gibbs sampler written in 'C++' code which uses conjugate priors to estimate the conditional posterior distribution of model's parameters.

Usage

jSDM_binomial_probit_long_format(
  burnin = 5000,
  mcmc = 10000,
  thin = 10,
  data,
  site_formula,
  n_latent = 0,
  site_effect = "none",
  alpha_start = 0,
  gamma_start = 0,
  beta_start = 0,
  lambda_start = 0,
  W_start = 0,
  V_alpha = 1,
  shape_Valpha = 0.5,
  rate_Valpha = 5e-04,
  mu_gamma = 0,
  V_gamma = 10,
  mu_beta = 0,
  V_beta = 10,
  mu_lambda = 0,
  V_lambda = 10,
  seed = 1234,
  verbose = 1
)

Arguments

burnin

The number of burnin iterations for the sampler.

mcmc

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to burnin+mcmc.burnin+mcmc must be divisible by 10 and superior or equal to 100 so that the progress bar can be displayed.

thin

The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value.

data

A data.frame with at least the following columns :

Y n_{obs}-length vector indicating the presence by a 1 (or absence by a 0),
of the species observed during each visit of the sites.
site numeric or character n_{obs}-length vector indicating the visited site,
(sites can be visited several times).
species numeric or character eqnn_obsn_obs-length vector indicating the species observed,
(species may not have been recorded at all sites).
x1,...,xp columns of explanatory variables for the suitability process of the model.
site_formula

A one-sided formula, as the formulas used by the lm function, of the form: '~ x1 + ... + xd + species:x1 + ... + species:xp' with p terms related to species effects \beta, specifying the explanatory variables for the suitability process of the model, including the intercept, different from the d terms related to \gamma parameters.

n_latent

An integer which specifies the number of latent variables to generate. Defaults to 0.

site_effect

A string indicating whether row effects are included as fixed effects ("fixed"), as random effects ("random"), or not included ("none") in the model. If fixed effects, then for parameter identifiability the first row effect is set to zero, which analogous to acting as a reference level when dummy variables are used. If random effects, they are drawn from a normal distribution with mean zero and unknown variance, analogous to a random intercept in mixed models. Defaults to "none".

alpha_start

Starting values for random site effect parameters must be either a scalar or a n_{site}-length vector, ignored if site_effect="none". If alpha_start takes a scalar value, then that value will serve for all of the \alpha parameters.

gamma_start

Starting values for gamma parameters of the suitability process must be either a scalar or a d-length vector. If gamma_start takes a scalar value, then that value will serve for all of the \gamma parameters.

beta_start

Starting values for beta parameters of the suitability process for each species must be either a scalar or a p \times n_{species} matrix. If beta_start takes a scalar value, then that value will serve for all of the \beta parameters.

lambda_start

Starting values for lambda parameters corresponding to the latent variables for each species must be either a scalar or a n_{latent} \times n_{species} upper triangular matrix with strictly positive values on the diagonal, ignored if n_latent=0. If lambda_start takes a scalar value, then that value will serve for all of the \lambda parameters except those concerned by the constraints explained above.

W_start

Starting values for latent variables must be either a scalar or a nsite \times n_latent matrix, ignored if n_latent=0. If W_start takes a scalar value, then that value will serve for all of the W_{il} with i=1,\ldots,n_{site} and l=1,\ldots,n_{latent}.

V_alpha

Starting value for variance of random site effect if site_effect="random" or constant variance of the Gaussian prior distribution for the fixed site effect if site_effect="fixed". Must be a strictly positive scalar, ignored if site_effect="none".

shape_Valpha

Shape parameter of the Inverse-Gamma prior for the random site effect variance V_alpha, ignored if site_effect="none" or site_effect="fixed". Must be a strictly positive scalar. Default to 0.5 for weak informative prior.

rate_Valpha

Rate parameter of the Inverse-Gamma prior for the random site effect variance V_alpha, ignored if site_effect="none" or site_effect="fixed" Must be a strictly positive scalar. Default to 0.0005 for weak informative prior.

mu_gamma

Means of the Normal priors for the \gamma parameters of the suitability process. mu_gamma must be either a scalar or a d-length vector. If mu_gamma takes a scalar value, then that value will serve as the prior mean for all of the \gamma parameters. The default value is set to 0 for an uninformative prior.

V_gamma

Variances of the Normal priors for the \gamma parameters of the suitability process. V_gamma must be either a scalar or a d \times d symmetric positive semi-definite square matrix. If V_gamma takes a scalar value, then that value will serve as the prior variance for all of the \gamma parameters, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is large and set to 1e+06 for an uninformative flat prior.

mu_beta

Means of the Normal priors for the \beta parameters of the suitability process. mu_beta must be either a scalar or a p-length vector. If mu_beta takes a scalar value, then that value will serve as the prior mean for all of the \beta parameters. The default value is set to 0 for an uninformative prior.

V_beta

Variances of the Normal priors for the \beta parameters of the suitability process. V_beta must be either a scalar or a p \times p symmetric positive semi-definite square matrix. If V_beta takes a scalar value, then that value will serve as the prior variance for all of the \beta parameters, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is large and set to 1e+06 for an uninformative flat prior.

mu_lambda

Means of the Normal priors for the \lambda parameters corresponding to the latent variables. mu_lambda must be either a scalar or a n_{latent}-length vector. If mu_lambda takes a scalar value, then that value will serve as the prior mean for all of the \lambda parameters. The default value is set to 0 for an uninformative prior.

V_lambda

Variances of the Normal priors for the \lambda parameters corresponding to the latent variables. V_lambda must be either a scalar or a n_{latent} \times n_{latent} symmetric positive semi-definite square matrix. If V_lambda takes a scalar value, then that value will serve as the prior variance for all of \lambda parameters, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is large and set to 10 for an uninformative flat prior.

seed

The seed for the random number generator. Default to 1234.

verbose

A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler.

Details

We model an ecological process where the presence or absence of species j on site i is explained by habitat suitability.

Ecological process:

y_n \sim \mathcal{B}ernoulli(\theta_n)

such as species_n=j and site_n=i, where :

if n_latent=0 and site_effect="none" probit(\theta_n) = D_n \gamma + X_n \beta_j
if n_latent>0 and site_effect="none" probit(\theta_n) = D_n \gamma+ X_n \beta_j + W_i \lambda_j
if n_latent=0 and site_effect="fixed" probit(\theta_n) = D_n \gamma + X_n \beta_j + \alpha_i and \alpha_i \sim \mathcal{N}(0,V_\alpha)
if n_latent>0 and site_effect="fixed" probit(\theta_n) = D_n \gamma + X_n \beta_j + W_i \lambda_j + \alpha_i
if n_latent=0 and site_effect="random" probit(\theta_n) = D_n \gamma + X_n \beta_j + \alpha_i
if n_latent>0 and site_effect="random" probit(\theta_n) = D_n \gamma + X_n \beta_j + W_i \lambda_j + \alpha_i and \alpha_i \sim \mathcal{N}(0,V_\alpha)

Value

An object of class "jSDM" acting like a list including :

mcmc.alpha

An mcmc object that contains the posterior samples for site effects \alpha_i, not returned if site_effect="none".

mcmc.V_alpha

An mcmc object that contains the posterior samples for variance of random site effect, not returned if site_effect="none" or site_effect="fixed".

mcmc.latent

A list by latent variable of mcmc objects that contains the posterior samples for latent variables W_l with l=1,\ldots,n_{latent}, not returned if n_latent=0.

mcmc.sp

A list by species of mcmc objects that contains the posterior samples for species effects \beta and the loading factors \lambda if n_latent>0.

mcmc.gamma

An mcmc objects that contains the posterior samples for parameters \gamma not returned if d=0.

mcmc.Deviance

The posterior sample of the deviance D is also provided, with D defined as:D=-2\log(\prod_{n} P(y_{n}|\beta_j,\lambda_j, \alpha_i, W_i)).

Z_latent

Predictive posterior mean of the latent variable Z.

probit_theta_latent

Predictive posterior mean of the probability to each species to be present on each site, transformed by probit link function.

theta_latent

Predictive posterior mean of the probability to each species to be present on each site.

model_spec

Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin.

The mcmc. objects can be summarized by functions provided by the coda package.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

Jeanne Clément <jeanne.clement16@laposte.net>

References

Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.

Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.

See Also

plot.mcmc, summary.mcmc jSDM_binomial_probit jSDM_binomial_logit jSDM_poisson_log

Examples

#==============================================
# jSDM_binomial_probit_long_format()
# Example with simulated data
#==============================================

#=================
#== Load libraries
library(jSDM)

#==================
#== Data simulation

#= Number of sites
nsite <- 50

#= Set seed for repeatability
seed <- 1234
set.seed(seed)

#' #= Number of species
nsp <- 25

#= Number of latent variables
n_latent <- 2
#'
# Ecological process (suitability)
## X
x1 <- rnorm(nsite,0,1)
x1.2 <- scale(x1^2)
X <- cbind(rep(1,nsite),x1,x1.2)
colnames(X) <- c("Int","x1","x1.2")
np <- ncol(X)
## W
W <- matrix(rnorm(nsite*n_latent,0,1),nrow=nsite,byrow=TRUE)
## D
SLA <- runif(nsp,-1,1)
D <- data.frame(x1.SLA= scale(c(x1 %*% t(SLA))))
nd <- ncol(D)
## parameters
beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp))
mat <- t(matrix(runif(nsp*n_latent,-2,2), byrow=TRUE, nrow=nsp))
diag(mat) <- runif(n_latent,0,2)
lambda.target <- matrix(0,n_latent,nsp)
gamma.target <-runif(nd,-1,1)
lambda.target[upper.tri(mat,diag=TRUE)] <- mat[upper.tri(mat,
                                                         diag=TRUE)]
#= Variance of random site effect 
V_alpha.target <- 0.5
#= Random site effect 
alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target))
## probit_theta
probit_theta <- c(X %*% beta.target) + c(W %*% lambda.target) +
                as.matrix(D) %*% gamma.target + rep(alpha.target, nsp)
# Supplementary observation (each site have been visited twice)
# Environmental variables at the time of the second visit
x1_supObs <- rnorm(nsite,0,1)
x1.2_supObs <- scale(x1^2)
X_supObs <- cbind(rep(1,nsite),x1_supObs,x1.2_supObs)
D_supObs <- data.frame(x1.SLA=scale(c(x1_supObs %*% t(SLA))))
probit_theta_supObs <- c(X_supObs%*%beta.target) + c(W%*%lambda.target) + 
                       as.matrix(D_supObs) %*% gamma.target + alpha.target
probit_theta <- c(probit_theta, probit_theta_supObs)
nobs <- length(probit_theta)
e <- rnorm(nobs,0,1)
Z_true <- probit_theta + e
Y<-rep(0,nobs)
for (n in 1:nobs){
  if ( Z_true[n] > 0) {Y[n] <- 1}
}
Id_site <- rep(1:nsite,nsp)
Id_sp <- rep(1:nsp,each=nsite)
data <- data.frame(site=rep(Id_site,2), species=rep(Id_sp,2), Y=Y,
                   x1=c(rep(x1,nsp),rep(x1_supObs,nsp)),
                   x1.2=c(rep(x1.2,nsp),rep(x1.2_supObs,nsp)),
                   x1.SLA=c(D$x1.SLA,D_supObs$x1.SLA))
# missing observation
data <- data[-1,]

#==================================
#== Site-occupancy model

# Increase number of iterations (burnin and mcmc) to get convergence
mod<-jSDM_binomial_probit_long_format( # Iteration
  burnin=500,
  mcmc=500,
  thin=1,
  # Response variable
  data=data,
  # Explanatory variables
  site_formula=~ (x1 + x1.2):species + x1.SLA,
  n_latent=2,
  site_effect="random",
  # Starting values
  alpha_start=0,
  gamma_start=0,
  beta_start=0,
  lambda_start=0,
  W_start=0,
  V_alpha=1,
  # Priors
  shape_Valpha=0.5, rate_Valpha=0.0005,
  mu_gamma=0, V_gamma=10,
  mu_beta=0, V_beta=10,
  mu_lambda=0, V_lambda=10,
  seed=1234, verbose=1)

#= Parameter estimates
oldpar <- par(no.readonly = TRUE) 
# gamma 
par(mfrow=c(2,2))
for(d in 1:nd){
 coda::traceplot(mod$mcmc.gamma[,d])
 coda::densplot(mod$mcmc.gamma[,d],
                main = colnames(mod$mcmc.gamma)[d])
 abline(v=gamma.target[d],col='red')
}
## beta_j
mean_beta <- matrix(0,nsp,ncol(X))
pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf"))
par(mfrow=c(ncol(X),2))
for (j in 1:nsp) {
  mean_beta[j,] <- apply(mod$mcmc.sp[[j]]
                         [,1:ncol(X)], 2, mean)
  for (p in 1:ncol(X)){
    coda::traceplot(mod$mcmc.sp[[j]][,p])
    coda::densplot(mod$mcmc.sp[[j]][,p],
      main = paste0(colnames(mod$mcmc.sp[[j]])[p],"_sp",j))
    abline(v=beta.target[p,j],col='red')
  }
}
dev.off()

## lambda_j
mean_lambda <- matrix(0,nsp,n_latent)
pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf"))
par(mfrow=c(n_latent*2,2))
for (j in 1:nsp) {
  mean_lambda[j,] <- apply(mod$mcmc.sp[[j]]
                           [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean)
  for (l in 1:n_latent) {
    coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l])
    coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l],
                   main=paste0(colnames(mod$mcmc.sp[[j]])[ncol(X)+l], "_sp",j))
    abline(v=lambda.target[l,j],col='red')
  }
}
dev.off()

# Species effects beta and factor loadings lambda
par(mfrow=c(1,2))
plot(t(beta.target), mean_beta,
     main="species effect beta",
     xlab ="obs", ylab ="fitted")
abline(a=0,b=1,col='red')
plot(t(lambda.target), mean_lambda,
     main="factor loadings lambda",
     xlab ="obs", ylab ="fitted")
abline(a=0,b=1,col='red')

## W latent variables
par(mfrow=c(1,2))
for (l in 1:n_latent) {
  plot(W[,l],
       summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"],
       main = paste0("Latent variable W_", l),
       xlab ="obs", ylab ="fitted")
  abline(a=0,b=1,col='red')
}

## alpha
par(mfrow=c(1,3))
plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"],
     xlab ="obs", ylab ="fitted", main="site effect alpha")
abline(a=0,b=1,col='red')
## Valpha
coda::traceplot(mod$mcmc.V_alpha, main="Trace V_alpha")
coda::densplot(mod$mcmc.V_alpha,main="Density V_alpha")
abline(v=V_alpha.target,col='red')

## Deviance
summary(mod$mcmc.Deviance)
plot(mod$mcmc.Deviance)

#= Predictions

## probit_theta
par(mfrow=c(1,2))
plot(probit_theta[-1],mod$probit_theta_latent,
     main="probit(theta)",xlab="obs",ylab="fitted")
abline(a=0,b=1,col='red')

## Z
plot(Z_true[-1],mod$Z_latent,
     main="Z_latent", xlab="obs", ylab="fitted")
abline(a=0,b=1,col='red')

## theta
par(mfrow=c(1,1))
plot(pnorm(probit_theta[-1]),mod$theta_latent,
     main="theta",xlab="obs",ylab="fitted")
abline(a=0,b=1,col='red')
par(oldpar)


jSDM documentation built on July 26, 2023, 5:21 p.m.