| predict.jSDM | R Documentation | 
Prediction of species probabilities of occurrence from models fitted using the jSDM package
## S3 method for class 'jSDM'
predict(
  object,
  newdata = NULL,
  Id_species,
  Id_sites,
  type = "mean",
  probs = c(0.025, 0.975),
  ...
)
| object | An object of class  | |||||||||
| newdata | An optional data frame in which explanatory variables can be searched for prediction. If omitted, the adjusted values are used. | |||||||||
| Id_species | An vector of character or integer indicating for which species the probabilities of presence on chosen sites will be predicted. | |||||||||
| Id_sites | An vector of integer indicating for which sites the probabilities of presence of specified species will be predicted. | |||||||||
| type | Type of prediction. Can be : 
 Using  | |||||||||
| probs | Numeric vector of probabilities with values in [0,1],  | |||||||||
| ... | Further arguments passed to or from other methods. | 
Return a vector for the predictive posterior mean when type="mean", a data-frame with the mean and quantiles when type="quantile" or an mcmc object (see coda package) with posterior distribution for each prediction when type="posterior".
Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
Jeanne Clément <jeanne.clement16@laposte.net>
jSDM-package jSDM_gaussian jSDM_binomial_logit jSDM_binomial_probit jSDM_poisson_log
library(jSDM)
# frogs data
data(frogs, package="jSDM")
# Arranging data
PA_frogs <- frogs[,4:12]
# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])
# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod<-jSDM_binomial_probit(# Response variable
                          presence_data=PA_frogs,
                          # Explanatory variables
                          site_formula = ~.,
                          site_data = Env_frogs,
                          n_latent=2,
                          site_effect="random",
                          # Chains
                          burnin=100,
                          mcmc=100,
                          thin=1,
                          # Starting values
                          alpha_start=0,
                          beta_start=0,
                          lambda_start=0,
                          W_start=0,
                          V_alpha=1,
                          # Priors
                          shape=0.5, rate=0.0005,
                          mu_beta=0, V_beta=10,
                          mu_lambda=0, V_lambda=10,
                          # Various
                          seed=1234, verbose=1)
# Select site and species for predictions
## 30 sites
Id_sites <- sample.int(nrow(PA_frogs), 30)
## 5 species
Id_species <- sample(colnames(PA_frogs), 5)
# Predictions 
theta_pred <- predict(mod,
                     Id_species=Id_species,
                     Id_sites=Id_sites,
                     type="mean")
hist(theta_pred, main="Predicted theta with simulated covariates")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.