Description Usage Arguments Details Value Examples
k Nearest Neighbors with Grid Search Variable Selection
| 1 2 3 4 5 6 7 8 | 
| train_x | matrix or data frame of training set | 
| test_x | matrix or data frame of test set | 
| cl_train | factor of true classifications of training set | 
| cl_test | factor of true classifications of test set | 
| k | the number of neighbors | 
| model | regression or classifiation | 
kNNvs is simply use add one and then compare acc to pick the best variable set for the knn model
ACC or MSE, best variable combination, estimate value yhat
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | {
   data(iris3)
   train_x <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
   test_x <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
   cl_train<- cl_test<- factor(c(rep("s",25), rep("c",25), rep("v",25)))
   k<- 5
   # cl_test is not null
   mymodel<-kNNvs(train_x,test_x,cl_train,cl_test,k,model="classifiation")
   mymodel
   # cl_test is null
   mymodel<-kNNvs(train_x,test_x,cl_train,cl_test=NULL,k,model="classifiation")
   mymodel
   }
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.