Description Usage Arguments Value See Also Examples
Vectorized (in σ) function of the MSE estimator in eq. (2.3) of Srihera & Stute (2011), and of the analogous estimator in the paragraph after eq. (6) in Eichner & Stute (2013).
1 |
sigma |
Numeric vector (σ_1, …, σ_s) with s ≥ 1. |
Ai |
Numeric vector expecting (x_0 - X_1, …, x_0 - X_n) / h, where (usually) x_0 is the point at which the density is to be estimated for the data X_1, …, X_n with h = n^{-1/5}. |
Bj |
Numeric vector expecting (-J(1/n), …, -J(n/n)) in case
of the rank transformation method, but (\hat{θ} - X_1,
…, \hat{θ} - X_n) in case of the non-robust
Srihera-Stute-method. (Note that this the same as argument
|
h |
Numeric scalar, where (usually) h = n^{-1/5}. |
K |
Kernel function with vectorized in- & output. |
fnx |
f_n(x_0) = |
ticker |
Logical; determines if a 'ticker' documents the iteration
progress through |
A vector with corresponding MSE values for the values in
sigma
.
For details see bias_AND_scaledvar
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | require(stats)
set.seed(2017); n <- 100; Xdata <- sort(rnorm(n))
x0 <- 1; Sigma <- seq(0.01, 10, length = 11)
h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h # Parzen-Rosenblatt estimator at x0.
# non-robust method:
theta.X <- mean(Xdata) - Xdata
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = theta.X,
h = h, K = dnorm, fnx = fnx0, ticker = TRUE)
# rank transformation-based method (requires sorted data):
negJ <- -J_admissible(1:n / n) # rank trafo
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = negJ,
h = h, K = dnorm, fnx = fnx0, ticker = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.