inst/examples/initializers.R

if(keras_available()) {
  X_train <- matrix(rnorm(100 * 10), nrow = 100)
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
  
  mod <- Sequential()
  mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
  mod$add(Activation("relu"))
  mod$add(Dense(units = 3, kernel_initializer = Zeros(),
                bias_initializer = Ones()))
  mod$add(Dense(units = 3, kernel_initializer = Constant(),
                bias_initializer = RandomNormal()))
  mod$add(Dense(units = 3, kernel_initializer = RandomUniform(),
                bias_initializer = TruncatedNormal()))
  mod$add(Dense(units = 3, kernel_initializer = Orthogonal(),
                bias_initializer = VarianceScaling()))
  mod$add(Dense(units = 3, kernel_initializer = Identity(),
                bias_initializer = lecun_uniform()))
  mod$add(Dense(units = 3, kernel_initializer = glorot_normal(),
                bias_initializer = glorot_uniform()))
  mod$add(Dense(units = 3, kernel_initializer = he_normal(),
                bias_initializer = he_uniform()))
  mod$add(Activation("softmax"))
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())
  
  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 0)
  
}

Try the kerasR package in your browser

Any scripts or data that you put into this service are public.

kerasR documentation built on Aug. 17, 2022, 5:06 p.m.