Nothing
if(keras_available()) {
X_train <- matrix(rnorm(100 * 10), nrow = 100)
Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
mod <- Sequential()
mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
mod$add(Activation("relu"))
mod$add(Dense(units = 3, kernel_initializer = Zeros(),
bias_initializer = Ones()))
mod$add(Dense(units = 3, kernel_initializer = Constant(),
bias_initializer = RandomNormal()))
mod$add(Dense(units = 3, kernel_initializer = RandomUniform(),
bias_initializer = TruncatedNormal()))
mod$add(Dense(units = 3, kernel_initializer = Orthogonal(),
bias_initializer = VarianceScaling()))
mod$add(Dense(units = 3, kernel_initializer = Identity(),
bias_initializer = lecun_uniform()))
mod$add(Dense(units = 3, kernel_initializer = glorot_normal(),
bias_initializer = glorot_uniform()))
mod$add(Dense(units = 3, kernel_initializer = he_normal(),
bias_initializer = he_uniform()))
mod$add(Activation("softmax"))
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 0)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.