Nothing
if (keras_available()) {
# X_train <- matrix(rnorm(100 * 10), nrow = 100)
# Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
mod <- Sequential()
mod$add(Dense(units = 50, input_shape = 10))
mod$add(Dropout(rate = 0.5))
mod$add(Activation("relu"))
mod$add(Dense(units = 3))
mod$add(ActivityRegularization(l1 = 1))
mod$add(Activation("softmax"))
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop())
# keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
# verbose = 0, validation_split = 0.2)
# save/load the entire model object
keras_save(mod, tf <- tempfile())
mod2 <- keras_load(tf)
# save/load just the weights file
keras_save_weights(mod, tf <- tempfile())
keras_load_weights(mod, tf)
# save/load just the architecture (as human readable json)
tf <- tempfile(fileext = ".json")
keras_model_to_json(mod, tf)
cat(readLines(tf))
mod3 <- keras_model_from_json(tf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.