Description Usage Arguments Details Value Note Author(s) References See Also Examples
Train the trainData using KFDA. Basically, we run KFDA using Gaussian kernel. Returns trained KFDA object.
1 |
trainData |
an optional |
kernel.name |
the kernel function used in training and predicting. This parameter is fixed in the |
kpar.sigma |
hyper-parameter of selected kernel. |
threshold |
the value of the eigenvalue under which principal components are ignored (only valid when features = 0). (default : 1e-05). |
Train the trainData using KFDA. Basically, we run KFDA using Gaussian kernel. Returns trained KFDA object.
Since this function performs KFDA with the appropriate combination of kpca and lda, the following values can show the result of each function.
An object of class kfda.
kpca.train |
An object of class "kpca". It has results of |
lda.rotation.train |
The result of applying LDA, After KPCA is performed on trainData. |
LDs |
A dataframe of linear discriminants of LDA. |
label |
A vector of class label of trainData. |
This package is an early version and will be updated in the future.
Donghwan Kim
ainsuotain@hanmail.net
donhkim9714@korea.ac.kr
dhkim2@bistel.com
Yang, J., Jin, Z., Yang, J. Y., Zhang, D., and Frangi, A. F. (2004) <DOI:10.1016/j.patcog.2003.10.015>. Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognition, 37(10): 2097-2100.
kpca (in package kernlab)
lda (in package MASS)
kfda.predict
1 2 3 4 5 6 7 8 9 10 11 12 |
Loading required package: kernlab
Loading required package: MASS
List of 4
$ kpca.train :Formal class 'kpca' [package "kernlab"] with 9 slots
.. ..@ rotated : num [1:105, 1:5] 1.183 -1.205 -1.083 1.237 0.334 ...
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:105] "15" "126" "105" "4" ...
.. .. .. ..$ : NULL
.. ..@ pcv : num [1:105, 1:5] 1.316 -1.341 -1.205 1.377 0.371 ...
.. ..@ eig : Named num [1:5] 8.56e-03 4.81e-04 1.28e-04 4.88e-05 2.37e-05
.. .. ..- attr(*, "names")= chr [1:5] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
.. ..@ kernelf :Formal class 'rbfkernel' [package "kernlab"] with 2 slots
.. .. .. ..@ .Data:function (x, y = NULL)
.. .. .. ..@ kpar :List of 1
.. .. .. .. ..$ sigma: num 0.001
.. ..@ kpar : list()
.. ..@ xmatrix : num [1:105, 1:4] 5.8 7.2 6.5 4.6 4.9 5.5 6.4 6.5 5.2 5.5 ...
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:105] "15" "126" "105" "4" ...
.. .. .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
.. .. ..- attr(*, "assign")= int [1:4] 1 2 3 4
.. ..@ kcall : language kpca(x = x, data = ..1, kernel = ..2, kpar = ..3, th = ..4)
.. ..@ terms :Classes 'terms', 'formula' language ~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
.. .. .. ..- attr(*, "variables")= language list(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
.. .. .. ..- attr(*, "factors")= int [1:4, 1:4] 1 0 0 0 0 1 0 0 0 0 ...
.. .. .. .. ..- attr(*, "dimnames")=List of 2
.. .. .. .. .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
.. .. .. .. .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
.. .. .. ..- attr(*, "term.labels")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
.. .. .. ..- attr(*, "order")= int [1:4] 1 1 1 1
.. .. .. ..- attr(*, "intercept")= num 0
.. .. .. ..- attr(*, "response")= int 0
.. .. .. ..- attr(*, ".Environment")=<environment: 0x5589d7180f00>
.. .. .. ..- attr(*, "predvars")= language list(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
.. .. .. ..- attr(*, "dataClasses")= Named chr [1:4] "numeric" "numeric" "numeric" "numeric"
.. .. .. .. ..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
.. ..@ n.action: NULL
$ lda.rotation.train:List of 10
..$ prior : Named num [1:3] 0.343 0.324 0.333
.. ..- attr(*, "names")= chr [1:3] "setosa" "versicolor" "virginica"
..$ counts : Named int [1:3] 36 34 35
.. ..- attr(*, "names")= chr [1:3] "setosa" "versicolor" "virginica"
..$ means : num [1:3, 1:5] 1.2012 -0.2625 -0.9804 0.0847 -0.1217 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:3] "setosa" "versicolor" "virginica"
.. .. ..$ : chr [1:5] "V1" "V2" "V3" "V4" ...
..$ scaling: num [1:5, 1:2] -7.418 -7.565 -0.678 3.26 -23.879 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:5] "V1" "V2" "V3" "V4" ...
.. .. ..$ : chr [1:2] "LD1" "LD2"
..$ lev : chr [1:3] "setosa" "versicolor" "virginica"
..$ svd : num [1:2] 52.68 8.35
..$ N : int 105
..$ call : language lda(formula = kpca.rotation.train$Y ~ ., data = kpca.rotation.train)
..$ terms :Classes 'terms', 'formula' language kpca.rotation.train$Y ~ V1 + V2 + V3 + V4 + V5
.. .. ..- attr(*, "variables")= language list(kpca.rotation.train$Y, V1, V2, V3, V4, V5)
.. .. ..- attr(*, "factors")= int [1:6, 1:5] 0 1 0 0 0 0 0 0 1 0 ...
.. .. .. ..- attr(*, "dimnames")=List of 2
.. .. .. .. ..$ : chr [1:6] "kpca.rotation.train$Y" "V1" "V2" "V3" ...
.. .. .. .. ..$ : chr [1:5] "V1" "V2" "V3" "V4" ...
.. .. ..- attr(*, "term.labels")= chr [1:5] "V1" "V2" "V3" "V4" ...
.. .. ..- attr(*, "order")= int [1:5] 1 1 1 1 1
.. .. ..- attr(*, "intercept")= int 1
.. .. ..- attr(*, "response")= int 1
.. .. ..- attr(*, ".Environment")=<environment: 0x5589d7180f00>
.. .. ..- attr(*, "predvars")= language list(kpca.rotation.train$Y, V1, V2, V3, V4, V5)
.. .. ..- attr(*, "dataClasses")= Named chr [1:6] "factor" "numeric" "numeric" "numeric" ...
.. .. .. ..- attr(*, "names")= chr [1:6] "kpca.rotation.train$Y" "V1" "V2" "V3" ...
..$ xlevels: Named list()
..- attr(*, "class")= chr "lda"
$ LDs : num [1:105, 1:2] -11.48 6.01 7.36 -9.64 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:105] "15" "126" "105" "4" ...
.. ..$ : chr [1:2] "LD1" "LD2"
$ label : Factor w/ 3 levels "setosa","versicolor",..: 1 3 3 1 2 2 3 2 1 2 ...
- attr(*, "class")= chr "Kernel Fisher Discriminant Analysis"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.