kFquant: Quantile regression modelling of kinetic field data

Description Usage Arguments Value Author(s) References Examples

Description

Fits quantile regression models to kinetic field data and displays predicted isopter values for selected quantiles. Used to generate normative/control isopter values.

Usage

1
2
3
kFquant(inf = NULL, is.octopus = FALSE, range.sex = NULL, 
        range.age = NULL, range.qual = NULL, plot.iso = "III4e", 
		    show.raw = FALSE, tau = c(0.025, 0.25, 0.5, 0.75, 0.975))

Arguments

inf

character, name of the demographics matrix

is.octopus

logical, TRUE if Octopus perimeter data

range.sex

character, either NULL (use all data) or "Male" or "Female"

range.age

numeric, either NULL (use all data) or single value or a vector of length 2 specifying a closed age range

range.qual

character, either NULL (use all data) or a single value from "Good witness", "Fair witness", "Poor witness"

plot.iso

character, "III4e", "I4e", or "I2e"

show.raw

logical, superimpose raw data points on grid? Default is FALSE.

tau

numeric, vector of quantiles to be fitted. Default is 5%, 25%, 50%, 75% and 95%.

Value

Graphical output

Author(s)

Dipesh E Patel & Mario Cortina-Borja

References

Geraci, M and Bottai, M. (2014) Linear quantile mixed models. Statistics and Computing, 24(3), 461-479. doi: 10.1007/s11222-013-9381-9.

Examples

1
2
3
4
5
## This requires sufficient data to generate robust models

kf.sort()
kFquant(range.qual="Good witness", range.age= 8:400,
        plot.iso="III4e", show.raw=FALSE)

kineticF documentation built on May 2, 2019, 2:45 p.m.