Nothing
#' Optimization for fixed-X and Gaussian knockoffs
#'
#' This function solves the optimization problem needed to create fixed-X and Gaussian SDP knockoffs
#' on the full covariance matrix. This will be more powerful than \code{\link{create.solve_asdp}},
#' but more computationally expensive.
#'
#' @param Sigma positive-definite p-by-p covariance matrix.
#' @param maxit maximum number of iterations for the solver (default: 1000).
#' @param gaptol tolerance for duality gap as a fraction of the value of the objective functions (default: 1e-6).
#' @param verbose whether to display progress (default: FALSE).
#' @return The solution \eqn{s} to the semidefinite programming problem defined above.
#'
#' @details
#' Solves the semidefinite programming problem:
#'
#' \deqn{ \mathrm{maximize} \; \mathrm{sum}(s) \quad
#' \mathrm{subject} \; \mathrm{to} 0 \leq s \leq 1, \;
#' 2\Sigma - \mathrm{diag}(s) \geq 0}
#'
#' This problem is solved using the interior-point method implemented in \code{\link[Rdsdp]{dsdp}}.
#'
#' If the matrix Sigma supplied by the user is a non-scaled covariance matrix
#' (i.e. its diagonal entries are not all equal to 1), then the appropriate scaling is applied before
#' solving the SDP defined above. The result is then scaled back before being returned, as to match
#' the original scaling of the covariance matrix supplied by the user.
#'
#' @family optimization
#'
#' @export
create.solve_sdp <- function(Sigma, gaptol=1e-6, maxit=1000, verbose=FALSE) {
# Check that covariance matrix is symmetric
stopifnot(isSymmetric(Sigma))
# Convert the covariance matrix to a correlation matrix
G = cov2cor(Sigma)
p = dim(G)[1]
# Check that the input matrix is positive-definite
if (!is_posdef(G)) {
warning('The covariance matrix is not positive-definite: knockoffs may not have power.', immediate.=T)
}
# Convert problem for SCS
# Linear constraints
Cl1 = rep(0,p)
Al1 = -Matrix::Diagonal(p)
Cl2 = rep(1,p)
Al2 = Matrix::Diagonal(p)
# Positive-definite cone
d_As = c(diag(p))
As = Matrix::Diagonal(length(d_As), x=d_As)
As = As[which(Matrix::rowSums(As) > 0),]
Cs = c(2*G)
# Assemble constraints and cones
A = cbind(Al1,Al2,As)
C = matrix(c(Cl1,Cl2,Cs),1)
K=NULL
K$s=p
K$l=2*p
# Objective
b = rep(1,p)
# Solve SDP with Rdsdp
OPTIONS=NULL
OPTIONS$gaptol=gaptol
OPTIONS$maxit=maxit
OPTIONS$logsummary=0
OPTIONS$outputstats=0
OPTIONS$print=0
if(verbose) cat("Solving SDP ... ")
sol = Rdsdp::dsdp(A,b,C,K,OPTIONS)
if(verbose) cat("done. \n")
# Check whether the solution is feasible
if( ! identical(sol$STATS$stype,"PDFeasible")) {
warning('The SDP solver returned a non-feasible solution. Knockoffs may lose power.')
}
# Clip solution to correct numerical errors (domain)
s = sol$y
s[s<0]=0
s[s>1]=1
# Compensate for numerical errors (feasibility)
if(verbose) cat("Verifying that the solution is correct ... ")
psd = 0
s_eps = 1e-8
while ((psd==0) & (s_eps<=0.1)) {
if (is_posdef(2*G-diag(s*(1-s_eps),length(s)),tol=1e-9)) {
psd = 1
}
else {
s_eps = s_eps*10
}
}
s = s*(1-s_eps)
s[s<0]=0
if(verbose) cat("done. \n")
# Verify that the solution is correct
if (all(s==0)) {
warning('In creation of SDP knockoffs, procedure failed. Knockoffs will have no power.',immediate.=T)
}
# Scale back the results for a covariance matrix
return(s*diag(Sigma))
}
#' Vectorize a matrix into the SCS format
#'
#' @rdname vectorize_matrix
#' @keywords internal
create.vectorize_matrix = function(M) {
# Scale the off-diagonal entries by sqrt(2)
vectorized_matrix = M
vectorized_matrix[lower.tri(M,diag=FALSE)] = M[lower.tri(M,diag=FALSE)] * sqrt(2)
# Stack the lower triangular elements column-wise
vectorized_matrix = vectorized_matrix[lower.tri(vectorized_matrix,diag=TRUE)]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.