Nothing
#' Determine next question for probabilistic knowledge assessment
#'
#' \code{kmassessinfmrative} determines the next question in a probabiliststic
#' assessment according to the informative rule.
#'
#' @param probs Probability distribution over the knowledge structure (vector)
#' @param ks Binary matrix of the knowledge structure
#' @param update Update rule ("Bayesian" or "multiplicative")
#' @param beta Careless error probabilities (vector)
#' @param eta Lucky guess probabilities (vector)
#' @param zeta0 Vector of update parameters for wrong responses
#' @param zeta1 Vector of update parameters for correct responses
#' @return Number of the selected question
#'
#' @examples
#' kmassessinformative(c(0.02, 0.1, 0.07, 0.01, 0.4, 0.17, 0.07, 0.08, 0.08),
#' xpl$space,
#' "Bayesian",
#' rep(0.3,4),
#' rep(0.2,4),
#' NULL,
#' NULL
#' )
#'
#' @family Knowledge assessment
#'
#' @export
kmassessinformative <- function(probs, ks, update, beta, eta, zeta0, zeta1) {
storage.mode(ks) <- "integer"
noi <- dim(ks)[2]
if ((min(ks) < 0) | (max(ks) > 1))
stop("Knowledge structure must be a binary matrix.")
if ((min(probs) < 0) | (max(probs) > 1))
stop("State probabilities must be between 0 and 1.")
if (!(kmdoubleequal(sum(probs), 1.0)))
stop("State probabilities must sum up to 1.")
if (update == "Bayesian") {
multiplicative <- FALSE
if (is.null(beta) | is.null(eta))
stop("beta and eta must be set!")
if (length(beta) != noi)
stop("beta and pks do not fit in size.")
if ((min(beta) < 0) | (max(beta) > 1))
stop("Illegal beta values.")
if (length(eta) != noi)
stop("eta and pks do not fit in size.")
if ((min(eta) < 0) | (max(eta) > 1))
stop("Illegal eta values.")
if (!(is.null(zeta0)) | !(is.null(zeta1)))
warning("Ignoring zeta values for Bayesian update rule")
} else {
multiplicative <- TRUE
if (is.null(zeta0) | is.null((zeta1)))
stop("zeeta0 and zeta1 must be set.")
if (length(zeta0) != noi)
stop("zeta0 and pks do not fit in size")
if (length(zeta1) != noi)
stop("zeta1 and pks do not fit in size")
if ((min(zeta0) <= 1) | (min(zeta1) <= 1))
stop("zeta0 and zeta1 must be larger than 1")
if (!(is.null(beta)) | !(is.null(eta)))
warning("Ignoring beta and eta values for multiplicative update rule")
}
H1 <- sapply((1:noi), function(q) {
if (update == "Bayesian")
ph <- kmassessbayesian(probs, ks, beta, eta, q, 1)
else
ph <- kmassessmultiplicative(probs, ks, zeta0, zeta1, q, 1)
(-sum(ph*log2(ph)))
})
p1 <- sapply((1:noi), function(q) {
sum(probs[which(ks[,q]==1)])
})
H0 <- sapply((1:noi), function(q) {
if (update == "Bayesian")
ph <- kmassessbayesian(probs, ks, beta, eta, q, 0)
else
ph <- kmassessmultiplicative(probs, ks, zeta0, zeta1, q, 0)
(-sum(ph*log2(ph)))
})
p0 <- sapply((1:noi), function(q) {
sum(probs[which(ks[,q]==0)])
})
hd <- p1*H1 + p0*H0
hs <- which(hd == min(hd))
unlist(sample(list(hs), 1))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.