Description Arguments Value Examples
This package provides an implementation of the Gibbs sampler, for using l1-ball prior with the regression likelihood y_i = X_iθ+ ε_i, ε_i\sim {N}(0,σ^2).
y |
A data vector, n by 1 |
X |
A design matrix, n by p |
b_w |
The parameter in Beta(1, p^{b_w}) for w, default b_w=1 |
step |
Number of steps to run the Markov Chain Monte Carlo |
burnin |
Number of burn-ins |
b_lam |
The parameter in λ_i \sim Inverse-Gamma(1, b_λ), default b_λ=10^{-3}. To increase the level of shrinkage, use smaller b_λ. |
The posterior sample collected from the Markov Chain:
trace_theta: θ
trace_NonZero: The non-zero indicator 1(θ_i\neq 0)
trace_Lam: λ_i
trace_Sigma: σ^2
1 2 3 4 5 6 7 8 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.